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ABSTRACT i

This paper deals with the dynamic unbalance response and transient !.

motion of the single mass Jeffcot-t rotor in elastic bearings mounted on ..

damped, flexible supports.

A steady state analysis of the shaft and the bearing housing motion

was made by assuming synchronous precession of the system. The conditions

under which the support system would act as a dynamic vibration absorber

at the rotor critical speed were studied and plots of the rotor and support

amplitudes, phase angles, and forces transmitted were evaluated by the

comp_;er and the performance curves were plotted by an automatic plotter

unit. Curves are presented on the optimization of the support housing

characteristics to attenuate the rotor synchronous unbalance response.

The complete transient motion including rotor unbalance was examined

by integrating the equations of motion numar;cally using a modified 4th

order Runge-Kutt_ procedure and the resulting whirl orbits were plotted

by an automatic plotter unit. The results of the transient analysis are

discussed with regards to the design optimization procedure derived from

the steady-state analysis.
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I NTRODUCTION !
I

The study of rotor dynamics has in recent years, become of increasing ;;

importance in the engineering design of power systems. With the increase i

in performance requirements of high-speed rotating machinery in various

fields such as gas ,urbines, process equipment, auxiliary power machinery

and space applications, the engineer is faced with the problem of designing

a unit cspable of smooth operation under various conditions of speed and

load.

In many of these applications the design operating speed is often

well beyond the rotor first critical speed, and under these circumstances

the problem of insuring that the turbomachine will perform with 3 stable

low-level amplitude of vibration is often difficult to achieve.

At the turn of the century H. H. Jeffcott (I) developed the fundamen-

tals of the dynamic response of the damped single mass unbalanced rotor

on a massless elastic shaft mounted on rigid bearing supports. The Jeffcott

analysis of the single mass model showed that operating speeds above the

first critical speed were possible and that a tow level of vibration would

be attained once the rotor had exceeded the first critical speed.

As various compressor and turbine manufacturers adapted the flexible !

rotor design concept in which the rotors were designed to operate above the "-"
t

first critical speed, various units developed severe operating difficulties

which could not be explained by the elementary Jeffcott model.

Under certain conditions of high speed operation above the first

i critical speed, such influences as internal rotor friction (2),hydro-
dynamic bearing and seal forces, (3) and aerodynamic cross coupling (4)

can lead to a destructive nonsynchronous precessive whirl motion being :
developed in the rotor system.

B. L. Newkirk and Kimball (5), in their early investigations of self-excit-ed Instability in compressors due to internal friction, were able to deter- i

mine experimentally that the introduction of a flexible support system

_r could greatly extend the rotor stability threshold speed. D. M. Smith _

(6) in 1933 was the first to verify Newkirk's findings theoretically by

lI
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expanding the Jeffcott model with internal damping to include a massless

Oamped flexible support system. Recent investigators such as Gunter (7),

Tondl (8), Dimentberg (9) and others (10) have shown that flexible damped\

supports may improve the stability characteristics of high speed rotors.

The problem of 'earing forces transmitted has been examined by various -"

researchers, (11, 12, 13, 14). They have shown that a significant reduc-

tion in the forces transmitted can be achieved by the proper design of

the bearing support system.

The present analysis was undertaken to determine the influence

of flexible supports on the synchronous unbalance response of the single

mass Jeffcott rotor, and to optimize the support system characteristics

so as to minimize the rotor amplitude and forces transmitted over a

given speed range. Den Hartog (15) has shown that the tuned vibration

absorber will greatly reduce the response of the forced vibrations of

the two-mass system. The following analysis par_llels this approach

for the case of a single mass rotor excited by an unbalance load.

_ This paper presents an analytic study of the tuned damper support

system similar to that employed by Brock (16) and also presents a

- generalized study performed on the digital computer to obtain optimum

support damping to produce tile best response of the rotor over a wide

speed range. It is well known that a damper support system can improve _ :

the vibration characteristics of a rotFting shaft and various investigators

I have considered the problem either from the standpoint of a continuous :elastic system or as a series of lumped masses (17-23).

_I Although the results presented in this paper apply specifically

to the single mass Jeffcott model, the optimization procedure may be

readily extended to more complex multi-mass rotor bearing systems by

employing a finite element rotor digital computer program similar to

the procedure presented by Lund in Ref. 24 or by using the procedure

I as outlined in the paper presented by Crook and Grantham (25) on thevibration analysis of turbine generators on damped flexible supports.

2
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EOUAT IONS OF MOT ION

Figure I'represents the single mass Jeffcott rotor mounted in damped

elastic supports• In the Jeffcott model, the shaft is considered as a

massless elastic member and the rotor mass is concentrated in a disc

mounted a, the center of the span• The shaft Is supported in linear

bearings which are mounted in damped flexible supports.

Neglecting rotor acceleration and the disc gyroscopics, the governing

equations of motion for the rotor, bearings, and support system in complex

notation reduce to the fol lowing (31) I°

• • M2euU2e;UtM2Z2 + CsZ 2 + CIZ s -iQZ 2 + (Ks - iuCi)Z s = (I)

CbZj - C.Zss + KbZj - (Ks - i_C.)Z0s = 0 (2)

. - - = 0 (3)
71 + C1Z1 + K1Z1 - CIZ s (Ks i_Ci)Z s

where

Z = Z2 - Z. - Z 1 = relative shaft deflection.s j

If the internal damping Ci and the aerodynamic cross coupling term Q

are excluded from the above equations then the system will be stable (26).

After the initial transient motion has damped out, it may be assumed

that the system steady-state motion is circular synchronous precession. In

i_ this case the displacements are related to the velocity and acceleration
',L vectors as follows:

i_t
• Z I = Aie

!
/ Z. : i_Z. (4)

I I _,

;;. = i_Z. =- _2Z.
_! I I I

*Illustrations begin on page 60.

3

, l I

1974021818-010



¢

where A_ is in general complex.
1

The differential equations of motion may be reduced to a set of algebraic

equations for the determination of the rotor steady-state motion.

(Ks - M2W2 + iCs_)A2 - KsA. - K AI = M2eu_2 (5)j s

- + i_Cb)A + K AI = 0 (6)KsA2 + (Kb + Ks j s

-KsA 2 + KsA. + (K] + K - Mlm2 + imC1)A ] = 0 (7)J s

ROTOR AMPL IF ICAT ION FACTOR

Consider the steady-state orbit of the flexible rotor on rigid

supports. The rotor amplitude is a function of both the rotor and bearing

stiffness and damping characteristics. Assuming AI is zero, the relative

journal bearing complex amplitude from Eq. 6 is given by

Ks(Ks + Kb - i_Cb)
A. = A2 (8)

J (Ks + Kb)2 + (_Cb)2

Solving Eq. 5 for the rotor amplitude yields

(K2 - M2_2 - i_C2)

A2 = M2eu_2 (9)
(K2 - M2_2)2 + (_02)2

where

KbKs(K s + Kb) + Ks(_Cb)2
K2 =

(K s + Kb)2 + (_Cb)2

Ks2C b
C2 = + C

+ KS)2 + (_Cb)2 s(K b

The rotor displacement vector Z2 may be expressed in terms of the

absolute displacement R2 and the nhase angle @ as follows

"t Z2 = R2ei(_t - @) (10)

4 _

1974021818-011



i.

; where

M2eu_)2
R2 =

: V(K 2 - M2_2) 2 + (_C2)_-

= tan-I

K_ _ M2m2J

The above results are similar to the rotor amplitude and phase angle

results for the single mass flexible rotor on rigid supports as shown by

Thomson (27).

The rotor undamped, or natural critical speed is given by

K-_-M___/" KbKs
= - - - - (11)

_c V (Kb + Ks)M 2

For the case of a lightly damped rotor system on rigid supports the

maximum rotor amplitude will occur at approximately the rotor critical

speed and the dimensionless rotor amplitude or amplification factor at

the critical speed is given by

R2 K2

A = _-I_=_ - _cC2 (12)U C

Example I

Consider a 97 lb. disc centered on a uniform massless elastic shaft
L/

as shown in Fig. (I). Assume that the bearing stiffness ;IZ is 500,000

Ib/in and that the effective shaft stiffness K at the disc station is
S

333,000 Ib/in. Assuming light damping, the total stiffness K2 is given by

KsKb I x 0.333 x 1012
K2 = _ = 250,000 Ib/in

Ks + Kb (I + 0.333)106

The rotor cri+ical speed is

a/25o,ooo_C = V 0.25 = 1,000 rad/sec

i ,
i
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or N = 9,550 RPM.
c

If the rotor damping Cs is assumed to be 15 Ib - sec/in and the bearing

damping coefficient %/2 is 80 Ib - sec/in. _nen the effective system damp-

ing coefficient C2 is approxima+ely given by

Kc2Cb_ (0.333)2 x 1012 x 160

C2 = Cs + - 15 + =25 Ib - sec/in

(Kb + Ks)2 (1.333)2 x 1012

The amplification factor at the rotor critical speed is given by

K2 250,000 = I0.0
ACR = A -

_cC2 1,000 x 25

The amplification factor of I0 represents a very ;ightly damped rotor

system and indicates that the rotor amplitude at the critical speed will be

I0 times the rotor unbalance eccentricity e .u

ROTOR RESPONSE ON DAMPED FLEXIBLE SUPPORTS

Solution of Eq. 6 for the case of synchronous precession for the

shaft relative deflection Z yields
S

IKb(Kb + K ) + (_Cb)2 + i_CbKsl
_ Zs = (Z2 _ Z1 ) s (13)

)2 + (_Cb)ZL (Kb + Ks

i in terms of the coefficients and
Hence, general C2 K2

'1 [K2 + i_(C2 - Cs)tZs = (Z2 - Z1) K (14)
I S

' The simultaneous equations for the absolute shaft and support housing

motion reduce to the following

[K I + K2 - MI_2 + ie(C2 + CI - Cs_A 1+ [-i_(C 2 - Cs) - K2]A2 = 0

(15)

6

Ji
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i

I--K 2 - im(C 2 - Cs).'_A1 + [_K2 - lU2_2 + iuC2_]A2 -- M2eum2 (16)

• If the damping terms are neglected, then the natural frequencies

of the system may be determined by the expansio,_ of the determinant of

coefficien-,s. The resulting frequency equation may be exp._essed es fol Io_s:

=-_i I + K+ .1_ K ' Kul)2/u C M *z

where

I

c

Figure 2 re--esents 1he dimensionless critical speeds vs. the dimen-

sionless suppor¢ stiffness facto r. K for various values of support to rotor

mass ratios. Note that the incorporation of the =texible support with the

rotor bearing system causes two critical speeds to occur; one uhich is

higher and one which is io_er tnan the original rotor critical on rigid

supports.

To solve for the complex support and rotor ampl i¢,__es A1 and A2, Eq.

15and 16may be expressed as follows:

[aij + ibij]A j = F,;, j = I, 2; i.= I, 2 (18)

Multiplying Eq. 18 by the complex inverse matrix Gf coefficients and ex- ,,

panding yields

FI al2 + ibl21
I

F2 at2 + ib22 i
Al = & , (19)

Where

&=d +id.
r I

dr = (K2 - M2u2)(K1 - Ml_2) - K2M2_2 - ClC2_2 - _2Cs(C2 - Cs)

1974021818-014
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r

d i = CI_(K 2 - M2_2 ) + C2_(K 1 - MI _2 - M2_21 + Cs_(K 2 + M2w2)

Expanding Eq. 19

Fla2? - F2a12 + i(F1b22 - F2b12}

Al = dr + id i (20)

In this case only an external unbalance excitation force F 2 is acting

on the shaft and no external exciting force _1 is assumed to be present on

th_ support system.'. For example, an excitation forceF 1 may be transmitted

to the rotor system through the support structure by vibrations of auxiliary

or adjacent equipment, t

F2[at2dr+ bl2d i + i(bt2d r- at2di)]
A] = - (21)

dr2 + di2

Assume At is of the form

AI = Air - iA1i (22)

The complex support amplitude Z1 after some complex algebraic manipulation

is given by

Z] = Ate iut = R1e i(ut - 61) (23)

where

d.

2 B1 = tan-1(.'_m)RI = _/A1r2 +AIi , Or
(

If the shaft damping coefficient Cs is cons!dered small in comparison

to the effective damping coefficient C2 than the system displacements and

phase angles are given as follows

K22 + (_C212

Vdr + I

and the phase angle of the support motion relative +o the rotati_g unbal-

.,-dis giv.._ b/

8

I
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l_l= tan -I -- (25)

i LK2dr + _C2diJ

i Since the comolex rotor support motion Z l is given by

' ;(_t- BI)

Zl = Xl + iY! = Rle

Then for example, the horizontal and vertical components of the support

motion a,'egiven by

IX t _ _/K22 + (_C2) 2 {cos(et - S!)[_Y1 i :M2eum2 )sin(rot- 61) _ (26)d 2 +d. 2
r i

In a similar fashion, the complex rotor amplitude Z2 is given by

ali+ ibl! i_t

Zo.= M2eu_2 d + id. e (27)
r i

After some manipulation, Eq. 27 reduces to the following

/(K1 + K2 - MI_2) 2 + ,'(C1 + C2)_) 2 ' i(,,t- 82)

Z2 = M2eu_231 e (28)
V 2 +d 2

dr i

where

; I[(KI + K2 - Ml_2)d" - (CI + C2)_d )

132= tan-I l i r (29)

(K 1 + K2 - Ml_2)d r + (C 1 + C2)_d i

The relative journal displacement is given by

Z. = Z 2 - Z1 - Z (30)j s

Where the relative shaft deflection is

(Z2 - Z1)

Zs - K [Ks - K2 - i_C2] (31)
s

" _ Solving for the journal d!sp!acement

9

I ,J
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J
! Z. =R.e

J J
[

; where,

(32)

and the phase angle 6. between the journal ampl itude and rotating un-
J

balance force is given by

= tan-I _ + tan -I (33)

Bj I ' " - MIw2)d'l + _Idi/ Ks - K2

FORCES TRANSMITTED

The magnitude of the resultant forces transmitted through the bearings

and the support are of considerable interest to the designer from a stand-

point of bearing life and system isolation. It is desirable to minimize

the forces transmitted through the supporting structure and foundation so

that other machines or piping systems are not _xcited. The magnitude of the

force transmitted through the bearings is given by

Fb = R.i #Kb2 + ({_Cb)2 (34)

and the force transmitted through the support system is given by

F 1 = Ri _IK] 2 + (_C1) 2 (35)

An indication of the effectiveness of the support system ' attenuating

the forces transmitted to the foundation is the support dv _mic transmissi-

bility factor TRD which will be defined as the ratio of the magnitude of the

transmitted support force to the rotating unbalance load. If the dynamic

transmissibility is less Than I, then the support system possesses good

attenuation characteristics. Analysis has shown that if the support

housing impedance characteristics, which are determined by the housing mass,

l
I0i
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stiff-ass and damping, are mismatched to the rotor-bearing system then

ind.- certain speed conditions the dynamic transmissibility may exceed I.

The dynamic transmissibility for the support is defined as

F; _ /(K2 2 + ((_C2)2)(K] 2 + (C1(_) 2)

TRD = -_/ (36 )2 +d 2
M2eu_2 dr i

f it is assumed that the rotor is operating well above any of the

sysre _ critical speeds then the dynamic transmissibility is approximately

given by

/(K2 2 + (_C2)2)(KI 2 + (C1_)2) ',I
7RD : ---_/ (37)

_4 V MI2M22

The above expression leads to the well known conclusion Tr,dt to

mir imize the forces transmitted through the suppor_ for supercritical

sp(ec:operation in the Jeffcott model, the support damping should be

zer) and the support stiffness should be as light as possible (28).

This is _ highly ..,desirable design practice for several reasons since

larqe "o'or amplitudes ano forces iransmitted may be encountered when pass-

ing tnroLgh the rotor critical speeds, and also the rotor system would be

extre_.'y shock sensitive and particularly susceptible to self-excit.d

whirl i ls_ability under such conditions.

A cor oromise SLpport damping coefficient shoald be selected to either

minimize _ne rctor amplitudes or the forces transmitted over the operating

-ed range a also be sufficient to insure adequate rotor stability.

ANALYSIS OF SYSTEM UNBALANCE RESPONSE - TUNED SYSTEM

Figure 3 rpDrpsents a computer generated plot of tne dimensionless

rotor rel_,tive amp'itude versus the dimensionless rotor speed for the

case of = ,i= I. This relative rotor amplitude is equivalent to the

motion monitored by a proximity probe mounted in the casing measuring

+he rotor motion at the center span. This system represents a tuned

condition in which the support stiffness ratio K is equal to the support

II

J
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mass ratio M. With no support damping in the system, the tuned support

will cause the relative rotor amplitude to be zero at a speed correspond-
i

' ing to the rotor critical speed with rigid supports. The introduction

of support mass and flexibility has caused two critical speeds to appear

in the system; one above and one below the rigid support rotor critical.

Note that when the support damping is relatively low the amplitudes at

the two criticals becomes extremely high.

As the dimensionless support damping ratio C increases from 0.01 to

I0 The rotor amplitudes at the system critical s_eeds decrease while the

amplitude increases at a speed corresponding to the rigid support critical

speed (_/_c = I). Note that in this case the damping value of I0 appears

to be close to an optimum value for the minimization of ti_e resonance

amplitudes. If the support damping is further increased from I0 to 50,

Fig. 3 indicates that there will be only one critical speed present in

the system which will correspond to the rigid support critical. Although

the damping of C = 50 is over 5 times the optimum value, the maximum

amplitude is only I/3 the rigid support value of I0. As the support damp-

ing approaches infinity, the rotor amplitude will asymptotically approach

I0,

Figure 4 represents the absolute dimensionless rotor motion for various

values of support damping ratio and is similar to Fig. 3. It should be

noted that The damping coefficient of I0 also appears to be close to the

optimum damping for the absolute motion as well as the relative motion.

It is of interest to note that The various damping lines all intersect

at a common point P in the plot of absolute as well as relative rotor motion.

If the rotor amplification factor A is I00 (implying light rotor damping)

then there will be two common points of inlersection P and Q on the response

plots (see Fig. I0) similar to that shown by Den Hartog for the damped

vibration absorber (15). The intersection points P and Q will occur at speeds

respectively below and above the rigid support critical speed. The rotor

amplitude may be minimized for the case of the absolute rotor motion by

i selecting the damoing such that the slope of the response curve is zero

at point P, and zero at point Q to minimize the rotor relative molion.

12
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Figure 5 represents the phase angle between the rotating unbalance

vector and the absoZute rotor displacemenV vector for various damping

coefficients. The phase angle for the single mass rotor on rigid

supports (Jeffcott model) increases with speed from 0 to 90 degrees

at the critical speed and asymptotically approaches 180 degrees as the

rotor speed greatly exceeds the critical speed. The phase angles of the

rotor on damped flexible supports has a considerably different behavior

from that of the rigid support rotor. For light values of support damping

(C = 0.01), the phase angle increases rapidly to 180° as the system passes

through the first critical speed and drops to almost 60° as it passes

through the second critical speed. As the speed greatly exceeds tne

highest critical speed, the phase angle again approaches 180°. The phase

angle of 180° indicates that the rotor mass center lies along the rotor

spin axis. As the support damping coefficient is increased beyond 5 for

the case of the tuned system, the reduction in phase angle above the first

critical speed is suppressed. This phenomena of phase angle reversal

above the first critical speed has been observed experimentally (30).

Figure 6 represents the support amplitude versus speed for various

damping values and indicates that #ith very light support damping there

will be large support resonances. As the damping is increased beyond

C = I0 the resonances are suppressed and the amplitude is only slightly

greater than I. For C = 50 there is only a small pea_ observed in the

support system which occurs at a speed corresponding to the rigid support

critical speed. The addition of high damping (C > 50) freezes the support

and limits its motion drastically.

Figure 7 represents the support phase angles versus speed ratio for

various values of support damping. The phase angle for light damping

(C = 0.01) is zero at low speeds and goes to 180 degrees as it passes

through the first critical and then shifts to 330 ° upon passing through

the second critical speed. If the rotor damping is light (A = I00) the

support phase angle will approach 360° after passing through the second

critical speed. Note that the various damping lines intersect at three

points. The first node point represents the first system critical speed,

13
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the second node point represents the rigid s_2port critical speed and the

: third node point represents the second critical speed on flexible supports.

In the discussion of the single mass flexible rotor presented in vibration

texts (27) the phase change is only shown from zero to 180 degrees. In

more complex systems with flexible supports, the phase change may vary

between 0 and 360 degrees. For example in multimass systems the authors

have observed phase changes of n times 180 degrees where n represents the

number of system critical speeds. The measurement of rotor and support

phase angles have been neglected and limited data has been reported in the

literature. This is an extremely useful variable which when _corporated

with displacement measurements can be used in balancing flexible rotors

or impedance calculations of the support system.

Figure 8 represents the dimensionless bearing forces transmitted for

the tuned system. The dimensionless force transmitted is obtained by

dividing by the transmitted force corresponding to the value at the crit-

ical speed of the original rotor on rigid supports. Because ot the light

shaft damping the force transmitted curves are similar in appearance to

the displacement curves. Note that for the support damping coefficient of

C = I0 the forces transmitted to the bearings at the rigid support critical

are only I0 percent of the value transmitted for the rotor bearing system

on rigid supports.

Figure 9 represents the force transmitted through the bearing supports

to the foundation or base for various values of supporting damping. With

a very lightly damped support system, (C = 0.01) the support amplitude and

force transmitted will be particularly high at the first critical speed

where the bearing and support motions are in phase. At the second critical

speed, the support amplitude is lower than the amplitude attained at the

Yirst critical speed. This is because the bearings and support motions

are out of phase which enables the bearing damping to help attenuate the

support motion. It is of interest to note from Fig. 8, for the tuned

rotor system, the bearing force transmitted at (_/_) = I with an J1dampedc

support system is zero. Figure 9 shows that the corresponding force trans-

mitted through the support system at m/mc = I has been reduced to only 10%

of the rigid support value.

14
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The force transmitted for an undamped support system at a speed

ratio of four is approximately I0% of +he rigid support value. This con-

dition would be desireable if it were possible to accelerate through the

criticals, thereby avoiding the large steady-state amplitudes and forces

developed,

The near optimum damping of I0 increases the support forces transmitted

in the supercritical speed region to 30% of the rigid support value and

the overdamped support system (C = 50) has increased 7_ ,._rlv 80%. Hence,

the support damping introduced to suppress the system resonar.es will cause

the forces transmitted to increase in the supercritical sp_ed region.

If the system is designed to operate over the entire speed range shown,

then the near optimum value of damping (i.e., _ = I0) for suppressing the

rotor absolute amplitude also produces the most desirable attentuation of

forces to the system support structure.

OPTIMUM DAMPING FOR TUNED SYSTEM

From the observation of the computer generated displacement and force

transmitted plots it is apparent that there exists an optimum damping to

either minimize the rotor amplitudes or the forces transmitted over the

entire speed range.

For example to minimize the absolute rotor motion as shown in Fig. 4

or the relative rotor motion shown in Fig. 3, the method of (16) may be

used in which the damping is chosen so that the slope of the amplitude

curve is zero at points P and O respectively. In the tuned system where

K/M = I for light rotor damping (A = I00), the rotor amplitudes at points

P and Q are independent of the support damping as _hown in Fig. I0 and

can be shown to be equal to

X2 = x2/eulp, Q = _ + 2M (38)

Therefore with the _uned system illustrated with a mass ratio of M = I,

the maximum amplitude at P or Q will be 1.732 times the rotor unbalance

15

f
1

1974021818-022



!

!
eccentricity. The optimum damping may be selected so that the tangent to !

the amplitude curve at el,her point P or 0 has a zero slope. By selecting

the optimum damping in this fashion it is seen that the maximu_ amplitude

in the system will not exceed the value given by Eq. 38. Thus it is readily

apparent that to minimize the rotor response over a given speed range, the

support mass should be kept as light as possible.

After considerable algebraic manipulation (28) the cptimum damping

coefficient for both points P and 0 is given by the following expression

:I _2 4M3_ 3 - 3M2(4M + 3)_ 2 + M(12M2 +I3M + 8)_ - M(I + 2M) 2= (39)
-12M_ 2 + 8(I + 2M)_ - (I + 2M)

where,

c

= CI/C c = CI/C 2 x 1/2A = C1

= £i2 or _22 depending on whether the value calculated is for point

P or Q respectively.

and

_I2 = _ + 2M
I + _ + 2M

£22 = _ + 2M
+ 2M - I

For example, when M = I and for the first node, P:

= £i2 = - 0.634

and

_2 = 0.447

Hence

16
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CI

_-'I : 0.688 for point P
_c'opt

In a similar fashion

CI

_--] = 0.559 for point Q
_c|opt

Example 2

As an exa._ple of the application of the tuned support design criteria

consider the rotor of Example I mounted in flexibly supported bearing housings

which weigh 48.5 Ib_ and have a stiffness of 125,000 Ib/in. The totai

support weight WI and stiffness KI is given by

WI = 2 x 48.5 = 97 Ib

K1 = 2 x 125,000 = 250,000 Ib/in

Hence,

M = M!/M 2 = 1.0

K = K1/K 2 = I.O

The critical damping coefficient C is given by
C

"_ _ 2K2 500,00_ Ib/in• C - - - 500 Ib-sec/in
c _ 1,000 rad/sec

C

Thus the support damping coefficients required to make the slope of

the rotor amplitude curve zero at points P and Q are respectively given

as follows

: 0.688 x C = 344 Ib-sec/in
Ci Ip c

= 0.559 x C = 279.5 Ib-sec/in
c_ Iq c

17 _,
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These calculations are valid only for the case of zero damping on

the rotor and in the bearings (i.e., A = _) and only for the tuned system

(i.e., K = M). For a more realistic solution, a value of A = I0 was chosen

and numerous cases were then programmed on a digital computer to arrive at

a value of optimum amplitude and required damping. This approach is dis-

cussed in the next section of this paper but the results for the tuned

system are very nearly the same as the results arrived at analytically for

the case of A = _ and are presented in Fig. II.

: The results shown in Fig. il are approximately correct for systems

having moderate to light damping on the rotor (i.e., I0 <-A < _). Note

that the smaller the mass ratio M, the lower will be the peak response

and also the lower will be the required support damping. For example, if

the mass ratio is 0.I, then the maximum dimensionless amplitude will be only

I.I and the required damping ratio will be 5 as compared to a value of 13.6

for an M ratio of I. Figure 12 is a response plot for the tuned system

K = M = 0. I which illustrates the validity of the results plotted in Fig.

II. The response curve for a damping ratio of 5 passes almost horizontal

through the node point and has the low amplitude ratio as indicated by

i Fig. II.
I

Example 3

Consider a roto'rsystem similar to Example 2 in which the rotor rigid

suoport amplification factor A = I0.

For a tuned support system the dimension less support dampir_ coefficient

is obtained from Fig. II for M = I as follows

C = C]/C 2 = 13.6

where C2 is given as 25 Ib-sec/in (Example I).

Therefore,

CI = 13.6 x C2 = 340 Ib-sec/in

18 _
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Note that this value ;s approximately the same as the value given in Example

2 for the required damping at point P corresonding to A .

This indicates that each support must have 170 Ib-sec/in. damping to

achieve the optimum response of about 1.7 times the unbalance level of the

rotor.

Next consider a tun_d support with a mass _._d stiffness ratio of 0.10

(see Fig. 12). Corresponding support weight and stiffness are given as

follows

Wl = 9.7 Ib/in

Kz = 25,000 Ib/in

The required damping is thus found from Fig. II to be

C "=5.0

or

CI = 5 x 25 = 125 Ib-sec/in

Thus only 62.5 Ib-sec/in. damping per support is required to obtain an

optimum response of I.I times the unbalance level of the rotor. This value

of I.I is in comparison to a maximum response of I0 times the unbalance

level for the rigidly mounted rotor-bearing system.

OPTIMIZATION OF SUPPORT DAMPING FOR OFF-TUNED CONDITIONS

In general it is not possible or necessarily desirable to have a

tuned support system. The support to rotor mass ratio is usually dic-

tated by design considerations and can be varied only within certain

ranges. Figure II shows that for best reduction of rotor amplitude, the

support mass should remain as light as possible. However, it will be

shown that even with high mass ratio support systems the rotor amplitudes

19
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can be attenuated by a factor of 5 by proper selection of th_ stiffness

and damping coefficients.

To evaluate the optimum damping for off-tuned conditions the computer

program was run for various support mass and stiffness ratios and each of

these for various damping coefficients. For example, Fig. 13 represents

the amplitudes at the rotor first and second critical speed for various

mass ratios with a dimensionless stiffness ratio of K _ 0.01 a_ the mass ratio

and damping are varied. The solid lines represent the _,,,plitudeat the

second critical speed and the dotted lines represent the ampli,ude a¢ the

first critical speed. With moderate support damping ratios it is observed

that as the mass ratio increases the amplitude at the first critical reduces

while the amplitude at the secona critical increases. The optim m damping

was selected as the intersection of the amplitudes at _he f_rst and second

critical for a particular value of damping. For example in Fig. 14 for K = 1.0,

the lowest optimum amplitude poin+ on the plo, "s given by a damp,ng ratio of

I0 and produces an amplitude ratio of about 1.5. Several l_lotssimilar

to Fig. 13 were produceG and the results were then crossplotted to obtain

plots of amplitude versus damping ratio such as Fig. 15 for K = 5.0.

Figure 14 represents the maximum "rotor amplitude vs. support damping

ratio for various values of dimensionless support stiffness for a rotor

bearing system with a low support mass ratio of 0.01. Figure 16 shows

; that for this particular case, the lowest amplitude is achieved by a low

support stiffness ratio of K = 0.01 which is of the same order as the mass

ratio. With this low support stiffness, there is a wide range of support

damping (i.e. C = I that can be used to achieve the low _evel of

rotor response.

Thus, under proper design conditions the suppor_ damping may be

allowed to v_ry by a considerable amount without impairing the rotor

performance. As the support stiffness ratio increases, The maximum rotor

amplitude response also increases and the required support damping must

be larger. For example, if the support stiffness ratio increases from

0.01 to 2.0, the optimum damping required increases by a factor of 5 from

approximately 2 to 30.

2O
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Figures 17 and 18 represent the maximum rotor amplitude for mass ratios

of O. IO and 0.715. Note also that for high stiffness ratio support systems,

the permissible range of the support damping coefficient is very narrow,

and that either a reduction or an increase of damping beyond the optimum

value will r_sult in a rapid gain in rotor response.

It is also of interest to note that if a high support stiffness (K = 2)

is used in c,njunction with a low value of support damping (C < 2) then the

rotor response will be worse than the original rotor ;_sponse on rigid

supports _A = iO).

Figure Ig represents The maximum rotor response vs. support damping

for a high support m_ss ratio system (M = 2). It is obvious from tne

comparison of Figs. _6 and 19 that the high mass ratio support system is

less desirable. The minimum rotor an_01itude that can De achieved is x2/e = 2u

_ith a tuned support where K = M = 2 and a support damping coefficient of

C = 20. (Also see Fig. II on the tuned system.) As the support stiffness

rat_ is reduced, the rotor response curve increases in the optimum damping

region.

If it is not possible to incorporate a high value of support damping

into the system (C = 20), then The rotor amplitude can still be reduced

to 40_ o_ the original rotor response by a low support damping value of

C = I and a reduced support stiffness ratio of K = 0.7. For low values of

support damping, if the support stiffness increases beyond K = 0.7, the

rotor response rapidly increeses.

A series of plots similar to Figs. 16 - 19 were produce0 for various

mass ratios in order to determine the optimum rotor response for off-tuned

support conditions. Figure 20 represents the rotor maximum amplitude vs.

the support mass ratio for various values of support STiffness with optimum

damping.

For the case of A = I0, Fig. 20 iIIustretes that the lowest amplitude

can be achieved with a low m_ss ratio suppor_ system. With a high mass ratio

suppor_ system such as M = 5, the _etnr amplitude X2 can be reduced from 10

to 2.8 by moans of a tuned support stiffness of K = 5.0 and optimum damping.
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: Note that as the support stiffness becomes very light, the maximum rotor

ampI itude increases to 7.5.

At a low value of support mass (M = O. I), the rotor amplitude increases

as the support stiffness increases. The optimum damping required with the

tuned support is given by the following approximate relationship

1.37 x K2 MO.437
cl u x (_0)

c

Figure 21 represent_ the rotor maximum amplitude vs. stiffness ratio

K for various values of mass ratio M and damping val _es C. This figure

illustrates that it is possible to operate with off-tuned conditions and

still maintain a low level of vibration. It is seen that the lignt damping

value C = 0.10 will produce the highest amplitude over the range of

stiffness plotted for K = 0.1 to I0. For K values less than 1.5, the damping

ratio should be less than 10, while for high stiffness supports where K > 2,

the damping value C should be > 20 for maximum attenuation. Note that for

low stiffness supports (K < 0.2) the value of C = 20 represents an over-

damped support system causing the amplitude and transmitted forces to be

greater than the optimum value.

Figure 22 represents the rotor maximum amplitude vs. support damping

ratio C for various values of support stiffness K with optimum support

mass M. Figure 22 shows that the lowest amplitude level can be achieved

with a low support stiffness (K = 0.01) and the support dampin 9 may vary

from C = 0.5 to I0 while maintaining a low level response. The figure also

illustrates that as the support stiffness is increased, the amplitude will

also increase for a given value of damping. It is also clearly seen that

a_ _he stiffness value is increased, a larger support damping value is re-

quired to produce a low vibration amplitude with optimum support mass ratio.

Figure 23 represents optimum damping and mass ratios for various values

of stiffness ratio. Figure 23 shows that, as the mass ratio increases, the

required stiffness ratio increases for a given value of damping. It is of

interest to note that for K values between 0.2 and 2.0, for a given M value,

there can be two values of optimum damping, a low value of C below I0 and a
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high damping va'ue > I0. Although high damping values may result in low

i rotor amplitudes, the bearing forces transmitted through the support will

be _uch higher. Therefore extremely large values of support damping

should be avoided.
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TRANSI ENT ANALYSI S

The previou_ discussion has been concerned only with the steady-state

response of the ro_or due to unbalance and has not considered the rotor

initial transient motion. As discussed previously, the damped flexible

support system is important, not only from the standpoint of reduction of

synchronous unbala,_ce response, but also in the control of self excited

vibrations such as caused by internal friction, aerodynamic excitation, etc.

Therefore to ;_;,estigate the genera/ rotor motion and also to provide a

check on the steady-state analysis, the rotor equations of motion were

integrateG forward in time on the digital co_uter using a modified 4th

order Runge-Kutta integration procedure. This procedure is of importance

particularly if the analysis is extended from a linear bearing or support

system to include a nonlinear hydrodynamic damper bearing as presented in

Ref. 13.

The dimensionless rotor and support transient orbits were automatical ly

computer plotted with the following dimensionless parameters

X = x/e u, Y = y/e u

Figure 24 represents the initial transient orbit of a 96.6 Ib rotor

of Example I with a highly damped sup0ort (C = 43) for the first 12

cycles of shaft motion. The support mass ratiu and the support stiffness

ratio are both approximately the same (0.I0) which represents a tuned

syst-_m. Because of the excessive supportdamping, the maximum force

transmitted to the support is 2.16 times the unbalance force wh_le the

force transmitted to the bearings is reduced by about 40%. The magnifica-

tions of the force to the support would be highly undesirable for appl ica-

tions such as aircraft jet engines. For example, various investigators

( have observed that such a situation occurs w_th the hydrodynamic squeeze

I film bearing when operating at excessive eccentricity
ratios (29).

Figure 25 represents the bearing absolute and relative motion correspond-

ing to the case as shown in Fig. 24. The solid line represents the bearing

absolute motion while the dashed line represents the bearing relative

24
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• motion. Since the suppor_ damping is I0 times the bearing damping, the

initial absolute bearing motion is not much larger than the bearing rela-

tive motion. Note that the timing marks on the orbit appear in the nega-

tive x direction T_,i= indicates that the bearing motion is 180° out of

phase witi, the rotating unbalance load.

Figure 26 i!lustretc_ the support housing motion. Because of ex-

cessive support damping, the initial support transient motion is quite

small and is less than the unbalance eccentricity. The phase _ngle between

the support motion and the rotating unbalance load is approximalely 220°.

Figure 27 represents the transient orbit for the same rotor system

except that the support, aemping has been reduced by a factor of I00 from

C I = 1,000 Ib-sec/in. to I0 Ib-sec/in. In this case, the maximum force

transmitted through the support is less than 9% of the roraTing unbalance

force and the bearing force transmitted is 16%. This orbit is a_alogous

to a suddenly applied unbalance such as a blade ;oss in an engine. Although

the forces transmitted have been greatly reduced with the low ,Tiffness

and damping support system, the rotor has Ceveloped a large in:tial transient

motion of over I0 times the unbalance eccentricity and this transient

motion is not readily damped out.

Figure 28 represents the absolute and relative bearing motion with

the low support damping of C] = I0 Ib-sec/in. The absolute bearing

initial transient motion is extremely l_rge while the relative motion is

well behaved. ,Note that the bearing relative phase angle has shifted from

180° for the highly damped case to 50° for the case with light support

" housing damping.

Figure 29 represents the support housing motion corresponding to the

system with light support damping. A comparison of the absolute support

motion and the absolute rotor motion indicates that the two are similar.

This implies that the initial transient motion of the rotor is _;;e primarily

to the large deflections in the support system.
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In Fig. 30, the rotor transient motion is depicted with an optimum

damping coefficient of C = 5.5 for minimum rotor response as determined

from the steady-state analysis. The transient response is rapidly suppressed

after seven cycles of shaft motion to produce a small stable synchronous

orbit. The transmitted forces to the bearings and support are nearly

balanced to achieve approximately a 75% attenuation of the unbalance load.

Figure 50 shows that with the optimum damping as determined by the steady-

state analysis, the initial transient ro¢or motion will be 5 times the rotor

unbalance eccentricity.

Figure 31 represents the bearing m*ion. After approximately 6 cycles,

the initial transient motion is damped out. Figure 31 indicates that the

absolute bearing mo¢ion is equal tc the rotor unbalance eccentricity after

the transient has died, and is 180° ou¢ of pL,ase with the rotating m-

balance load. The relative bearing motion is approximately 60_ of the

unbalanced eccentricity and lags the rotating unbalance by about 120°.

Figure 52 represents the support motion anG _ is also similar to the rotor

motion as shown in Fig. 50.
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SUMMARY AND CONCLUSIONS

The equations of motion for a single mass rotor-bearing system on

damped flexible supports have been derived and studied considering both

a steady-state and transient type analysis. Design charts for both tuned

and off-tuned support conditions have been presented.

The analysis may be summarized by the following general statements.

I. The critical speed response of the single mass Jeffcott model

rotor may be completely eliminated by means of a low mass ratio flexible

support with optimum damping. In this case the rotor steady-state ampli-

tude of motion over the entire speed range will only be slightly mcre than

the rotor unbalance eccentricity.

2. The support mass ratio should be kept as light as possible tn

achieve minimum rotor amplitude.

3. Tne rotor amplitude may be considerably attenuated even for

high mass ratio support systems by tuning the support stiffness such that

K = M and incorporating optimum damping for the tuned conditions.

4. With a low mass ratio support system, the required value of

optimum damping is not critical and can vary by a factor of I0 without

appreciably effecting rotor performance. As the mass ratio increases, the

required value of optimum damping increases rapidly and the permissible

range of variation of support damping diminishes.

5. The off-tuned support (K # M) can be designed to produce a

consideraDle improvement in system response in comparison to the rotor on

rigid supports. If insufficient damping is incorporated in The suppcr

then the resulting rotor steady-state amplitude may be larger than the

original rotor response for support _'iffness values K > I.

6. If there is excessive suppor+ damping (C > 20) with a low mass

ratio support (M = 0. I), Then the forces transmitted through the support

may exceed the unbalance forces (TRDS > 1.0).

7. Although the steady-state analysis shows that the rotor amplitude

will be small for an underdamped (C < 0.50) low mass ratio support system,

the orbital analysis shows that a large initial transient motion can be
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generated due to the suddenly applied unOalance force and that this motion

is not readily attenuated.

8. The optimum damping based on minimization of the rotor steady-

state amplitude for both tuned and off-tuned conditions produces a satis-

factory transient response from the standpoint of rapid reduction of the

initial transient motion, improved system stability and reduction of the

forces transmitted.

T

I •

•' 28
i °

J

1974021818-035



ACKNOWLEDGEMENT

The research described herein was conducted at the University of

Virginia under NASA Research Grant NGR 47-005-050 with Mr. William J.

Anderson, Chief of Bearings Branch, Fluid System Components Division,

NASA-Lewis Research Center, as Technical Manager. The authors wish to

express their appreciation to Mr. Anderson for his assistance and

support in the development of this work.

f

;I 29

J

1974021818-036



i

APPENDIX A

DISCUSSION

A high speed rotor shaft may be considered as a continuous elastic

member with variable mass and inertia properties along its length. The

rotor shaft usually has attached to it such components as turbine or

compressor blades, impeller disks, or spacer assemblies or seaJs If

the axial dimensions of each rotor c_mponent is small in comparison to the

overall length of the rotor, then each compgnen+ may be treated as a con-

centrated mass with a polar moment of inertia equivalent to that of the

original component. If the mass of the cemponents are large in comparison

to the shaft mass connecting the components, then the shaft weight can

be neglected or considered to be located at the mass stations. If _ne polar

moment of inertia of each section is ignored, then the stations may be

considered as concentrated m_sses, rather than distributed in the plane

of the rotor element. However, if the sections whirl in a plane, perpen-

dicular to the spin axis then the gyroscopic moments do not act on the

system and hence the equations reduce to the same as if point masses were

assumed.

The position vector of the nth mass center is given by

_b + eP = + 6j + 6s u

where

_b = vectoral bearing deflectionsupport

_. = vectoral journal deflection
J

6 = vectoral shaft deflection
s

= displacement of mass center from the shaft centerline
! U

I

i
.J ;
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The system being analyzed has been reduced to a single mass rotor

mounted in idealized linear bearings and the bearings are in turn mounted

on damped, elastic supports. By considering only small deflections, the

spring rate of the flexible, massless rotor shaft may be considered to be

linear.

The rotor disk (see Fig. I) is considered to whirl in a plane and

hence no gyroscopic moments are acting on the system. The orthogonal support

and bearing spring rates are assumed symmetric and no cross coupling terms

are considered to be acting at the support housings. The aforementioned

assumptions allow The equations of motion of the system to be written as

total differential equations,

DERIVATION OF EQUATIONS OF MOTION

A.I Kiqematics

The position vectors to the mass stations are given by

m1: bearing .. MI/O

housing mass P = XI_ x + Yi_'y (A.I)

m2: rotor mass

M2/O
"1_ = (X 2 + e cose)'_ + (Y2 + e sine)'_ (A.2)

u x u y

The velocities of the mass stations are given by

Ml/O .
-_ -" (A.3)
V = Xl_x + Ylny

_M2/O ,
V = (X 2 - e esine)-_ + (Y2 + e ecose)-_" (A.4)

u x u y
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A.2 Kinetic Energy

The kinetic energy of the system is given by

2 3 3

i I _ (MiV3 o_. ) + I
i=l j=l 0j 0 j

neglecting the gyroscopic couples acting on the disc, the system kinetic

energy reduces to

= I " YI +_ 2 uT _ MI(X12 + 2) I MZ[(_ - e esine) 2 + (Y2 + e ecose)_]

I 02 (A.6)
+ _ _zz

A.3 Potential Energy

The potential energy of the system is composed of the sums of the

potential energy of the flexible shaft, the potential energy of the bearings,

and the energy of support structure as follows

V = _1 [Ks(Xs2 + Ys2) + Kb(X.2j + _.2)j _ KI(X1 2 {i 2)] (A.7)

where

Xs = X2 - X] - X.

A.4 Dissipative Energy

The system dissipative energy consists of the damping functions provided

by the bearing support system, the bearings, and the external and internal

rotor damping and the aerodynamic rotor cross coupling as described by

Afford (4).

I " " (X2 2 + y2 2)
D = _- {CI(X:I2 + YI2) + Cb(Xj2 + yj2) + Cs

+ Ci[Xs 2 + Ys2 + 2_(YsX s _ XsYs )] _ Q(Y2X2 - X2Y2)} (A.8)
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The internal damping function is dependent upon the rotor precession rate

and can cause self excited whirl instability when the rotor is operated
i

; above the crilical speed (26). Alford has demonstrated that the aerodynamic

; cross coupling stiffness term can also cause -otor instability when the

rotor speed is supercritical. When the system dissipation function is com-

prised of only the first three terms, the system is inherently stable.

A.5 Lagranges Equations

The governing equations of motion are obtained from Lagranges Equations

which state:

d___EaL ] _ _L + aD _ F (A.9)
dt . " qr

_qr aqr aqr '

where

L=T-V

The total number of equations of mo#ion obtained will be equal to the

number of degrees of freedom of the system which is seven and are given as

follows.
P

Rotor

• 0

" '<2: M2X2 + CsX2 + Ci(X2 - X1 - X.) + K£(X 2 - X1 - X.)J - J
(A.I0)

- - = M2eu(_2cos(Jt) + _sin(_t))+ OY2 + eC i(Y2 YI Yj)

Y2: M2Y2 + CsY2 + Ci(Y2 - YI Yj) T Ks(Y2 - YI - Yj) - QX2
(A.II)

- - ,, _ = M2eu(_2sin(_t) - _sin(_t))- _C i (X2 Xl j.

33
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Bearings

X.: (C. + Cb)X. - C.(X 2 - X1) + (Kb + K )X.
, j I j _ s j

tA.12)

- Ks(X2 - Xl) - C'_(Y21 - Y1 - Yj) = 0

J

Y : (C + Cb)Yj - C (Y2 - YI) + (Kb + K )Yj , , s j
(A. 3 _

- Ks(Y2 - Y1 ) + C _(X 2 - X] - X ) = 0J J

Support

°°

XI: MiX i + (C i + Ci)x i - Ci(x 2 - X.) + (Ki + Ks)X 1J
(A.14)

- K (X 2 - X.) - C._(Y 2 - Y1 - Y-) = _
s j i j

YI: M1Y1 + (C1 + C.)Y1 - C.(Y2 - Y- ) + (K1 + K )_1i t j s
(A.15)

- K (Y2 - Y.) + C-w(X2 - X1 - X.) = 0
s j i j

Angular Acceleration

e: (¢ZZ + M2eu2)e + M_# _2cOsC - X2sinO
(A.16)

- BfY2s'ne + X2cosO) ] = Tz(e)

Where

0 = _, 0 = u_

The equations A. IO to A.15 may bevectorially combined by representing

the displacements in comp ex notation as fc'lows

; [

: " 34

i

1974021818-041



Z2 = X2 + iY2 j

I I (A. "7)

" .=X. +iY.
Zj j j _ __

" |, Z] = Xl + iY).
J

- - " "
: (A. IS)

i. _ iOZ2 _ iwCilZ 2 Z1 - Zj) = M2eulw2 - iQlei_t

t

Zj: (Cb + ci)zj - ci(z2 - Z;) + (Kb '+ KslZJ (A. 191 _ -

_ Ks(Z2 _ Zl ) + iCiulZ 2 - Z1 - Zj) = 0 ]

Zt : NZ_Z + (Cz + Ci)Z z - Ci(z 2 - Z;) + (Kz + Ks)ZZ
(A.20) ,

.) + iC.u(Z 2 - Z1 - Z.) = 0
- Ks(Z 2 - Zj u J

!

!

!
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APPENDIXB

TRANSIENTCDNPUTERPROGRN4FOR THE THREEMASSSYSTEM

The rotor syste_ used in the transient analysis is of considerably

greater _nplexity than the equations used in the steady-state analysis.

J |n The more generat--h'ansient analysis, internal and aerodynamic cross
coupling may be incorporated in the rotor. The bearing may have 8 stiff-

ness and damping coefficients whi le the support system may have 4 stiffness

: and damping coefficients. Because of the more general ized treatment,

" studies may be conducted on the stability of the rotor due to hydrodynamic

bear_.,g forces, internal friction, or aerodynamic cross coupi ing. The

: support system can be investigated to show the influence of the support

- damping in promoting stabi I ity.

=- Equations of Motion;

x2: ,2x:,+cs_2+ci (x2- x_- xj)

+ K(X 2 - X! - Xj) + QY2 + uCi(Y2 - Y] - Yj)

= M2eu=2Cosut (B. I )

°.

; Y2: 'v'zY2 + CsY2 + C-(Y2 - Y1 - _-)

+ Ks(Y2 - Yt - Y-) - QX2 - _i (x2 - ×t - X.)J J ,
1

! :

= M2eu_2Sinut (B.21

x.: 2M.(_+ _.) + (C.+2c )i.- c.(i2- i_) '
_ j j j i x× j i

+ (2Kxx + Ks)Xj - Ks(X2 - XI) - C'u(Y21 - Y1 - TMJ _

+c _)=0 (B.3) i
+ 2 (KxyYJ xy I

"i i
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..... • ......... • _ ° -

Yj- , Yj) + (ci + 2cvv)_J -ci(_ 2 - :t_)

(2Ky + K]Yj - Ks(Y2 - Y1) + C..(X2' - Xz - xj] '

+ 2(K X. + C )(.} = 0 (B.4)
yx j yx j

x_: 2._], :_.&_ + ;_.)+ (2c * ci)i_j j zx

- - + Ks)X l - K(X 2 -X.]Ci ()(2 )(,j) + (2KIx j

I - Ciu(Y2 - YI - Y-) = 0 (B.5)J

YI: 2M1Y! + 2M-IYIj + Y-Ij _ (2Cly + C.)Y!

- Ci(Y 2 - Yj) + (2Kly + KIY I - Ks(Y2 - y.)J

+ C.=(X 2 - Xl - X.) = 0 (8.6)
, j

The support equations can be reduced to the fol lowing form by using

Eqs. B.5 and B.4.

i
MI.XI + CIx)(I+ KIxXI - Cxx)(j- Cxy'_'J

- K X. - K Y. = 0 (B. 7)
xxJ xyj

M_;_+ C_y_',+ - C _.-C i'.KIyYI yx j yy j

- K X. - K Y. = 0 (B.8)
yx j yy j

37
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|

11155 AN JULY ODe lOT| .***-*****,6,***** KIRK. R. GOROON M.(¢
BEGIN

COMMENT
TH|S PROGRAM CALCULATES THE TRANSIEM1 RESPONSE OF A SIMGL(eMASS

• FLEXIBLE ROTOR ON FLEXIBL[ BEARING SUPPORTS (LINEAR) , TH[ RESULTS
ARE PLOTTED AUTOflATICALLY (SEE INPUT CARDS BEL_N) AND THE
INITIAL ANO FINAL VALUES ARE PR|NTED O'T ON THE LINE PRINTERt
THEY APPEAR IN THE CORRECT ORDER TO BE TYPED ON DATA CARDS
TO CONTINUE THE HOT|ON IF DESIRED (THAT IS CARD 5(4)),

EN_ OF COHHENTI
I

S THE INPUT TO THE PROGRAM IS AS FOLLONS I
1 (ALL OATA IS IN FP£( FIELD )

CrlkHENT

CARD | RE_{CRe/_TMAXeH, NeCASND)
- TNAX - NO, OF RADIANS SOL, IS 10 BE SOLVEO

H • STEP SIZE USED IN INTEGRATION PROCEDURE (TRAXIH5700)

h • NO, oF EOSt TO BE INTFGRATED
( • 12 IF SUPPORT • • B IF NO SUPPORT)

CASNO - IOENTTFICATION NUMBER (XXXXtXXXX)
[(HU,)(OAY),(YEAR)(CASE NO,))

CSRO 2 READ(CRt/,HPH, N_K,OS_CI,OACmEUmNJ,Wl)

_ RPH - ROTOR SPEED REV/N;Nk - ROTOR _EIGHT , LB,

K - ROTOH SHAFT STIFFNESS • LB/IH

OS - ABSOLUTE SHAFT DAMPING • LB-SEC/IN
C! - INTERNAL FRICTION DAMPING , LB-SEC/IN
OAC - CROSS-COUPLING• LB/IN
Eu - UNBALANCE ECCENTRICITY OF M IN MILS

- NJ g JOURNAL HEIGHT AT EACH END , LB,
_1 - SUPPORT HEIGHT AT EACH BEARING • LB,

-t

CARD 3 REAO(CRp/,KXX,KYY•CXX,CYY_KXY,KYXeCXYe_YX)

_.:-4 BEARING STIFFNESS AND OAHP|NG OF EACH BEARING

CArD 4 IF N>8 THEN REAO(CR,I,KIX,KIYeC|XeC|Y)
SUPPORT STIFFNESS AND DAMPING OF EACH SUPPORT

.._ CARD 5 (4_ REAO(CR,/_FOR leO STEP ! UNTIL N DU(Y(O•I)])O IS FOR INITTAL TIME, RAOIANS

I o ABSOLUTE ROTOR OISP, _ _*DIR,
2 " ABSOLUTE ROTOR VELOCITYp X-OIN,
3 " ABS, ROTOR OISP, , YgDIR,

i 4 - ABSo ROTOR VEL, p YeDIRo"_ 5,6•7,6 - SAME ORUER AS ABOVE JOURNAL
FOR RELATIVE NOTION

9p10,11,12 " SAME AS ABOVE FOR SUPPORT NOTION (IF REOUIREO)

:_ II CArD 6 (5)REAO(CR_/CS, ISCALEeXHINpOX,XNIN_,OX2•XMIN3,OX])

I C_ - PLOTTER CONTROL 0 " NO PLOT | ° PLOT
ISCALE - SCALE CONTROL 0 ° PROG, SCALE I " USE FOLLONING INFOo

38
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XMIN " NOt TO APPEAR AT OR|G|N ROTOR O|SLPAC(M(NT
OX e SCAL( INCR[H(N7 PER INCH ROTOR O|SPLACEMENT
XN|N2eDX2 - SAME AS ABOVE BUT FOR JOURNAL PLO|
XM|N$,DK3 - SAME AS AROV( BUT FOR SUPPORT

CARD T (6) IF CS_O THEN READ(CR_I,RPCS)
RPCS - HOe OF T|M(S |NTEGt FOR TNAX RAD|ANS |S TO BE SOLV(O

EXAMPLE DATA |NPUTI
12tS6_O.OS_B_6OB.7101_
tO000_675e2BOOOO_OeOeOeO.Sp312_SOe
$51000p606000eT]Oe665eo,o,o_o,
Ow°OeS_OpOa'O.S_'O.O_OoOp'O.OSm
leOpO,OpO_OpO,Op
5p

NOTE OH PLOTTINGI
RERUEST ONE (1) BLOCK PER SET OF OATA

., END OF COMMENT J
"''_EPEAT THE SERIES FOR EACH CASE "'°

INTEGER CS J

INTEGER |pJ_NApNJ
BOOLEAN |SCALE )
BOOLEAN STABLE J
INTEGER RPCeRPCSJ
|N]EGER VV )

ALPHA ARRAY ALP|eALP2(OIB]_ ALP3eALP4eALP_ALPbwALPTpALPBp
ALP9JALP|O,ALPt|pALP|2JALP|3oALP|4pALP|SpALPI6pALP|T(OI3)I
ALPHA ARRAY ALPHA|_ ALPHA2(OI2);
ALPHA ARRAY ALP|BJALP|9(OI4))
_LPHA ARRAY ALP20(OIS]j ALP21(OIB)e ALP22(OI3)J
ALPHA ARRAY ALP23aALP24(OI4)J
ALPHA ARRAY ALP25JALP26_ALP27JALP26(OIT)J
ALPHA ARRAY ALP29JALP30(OI$)J
REAL CASNOJ
REAL K2XpK2YpC2_tC2YJ NCXpMCY_ACX_ACYJ
REAL K||_K|2_K|3_K|4_FMBH_FNB|_FMSH_FM$|,T|MHB_T|MHS|
REAL TNAXH I
REAL FNSHHeEHBHHeT|MHBHeT]MHSHJ
REAL QAC_Y',XN_eDX2_XMAX2eXM|N3eOX3_XMAX3e YM|N_DY2_YMAX2_
YM|N3_DY3_YMAX3I
REAL ZZeZZ2_ZI_Z2_Z3_Z4_ZSeZ6_Z?_ZOeZg_Z|O eYO_YI_Y2,T3_Y4_YS_
YBeYTeYBpYOeYtOJ
REAL YlleY|2eOSpC|effJ_KXXeKYYeCXX_CYYeKlXeKIY,G|X_C|YJ
REAL NJ_Z22eZ32eZtI_ZI2_Zt3eZ|4_ZIS_ZIB_Z|7_Z16 eEU
REAL XAaRXA_X_eHXIeYAeHYAeY|eHY| |
REAL TMAX , H_C¢_ M, OREGA_ OMEGA2 I
REAL NCS I
REAL DUMI_OUN2eDUN3_DU_4_OUM22_OUNA2eRE|_IMIeMI.N|_C]eKI_KB_CB |

_ REAL K2eC2 J
_; REAL RPM_M_KeCD_CG_DC_RADeNeOOC_NC|eNCRATID_UENIeAAeOEN2_ACR_

XNAXeYMAX J
REAL XH]N_ YH|Ne OXe OY J
REAL KXyeKYXeCXYeCYX)

| REAL ZIg,Z2O_Z2|_Z23J

39
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i

i
!

r LABEL ALLDONE p AGARD J

REAL ARRAY ApBwC[OI4]pQ_KKpY[OI4pOI|2]pF[OI|2]pAY[OI|2,01700] I
ARRAY HXR,BYR[OITO0])

LABEL REPEATJ

I FORMAT OUTOATA (X2pE|3,6pX2pF6,2,A(X2_(|3,6))/

PHOC[DUR( MAXMIN (XjYpNeH)I VALU( NeHI

I REAL M) INTEGER N) ARRAY X_Y(O] |

_[GININTEGER I J

XI * XA * X(I) I YI 6 YA * YII] J
FflR 1 * 2 STEP I UNTIL N O0

BEGIN
IV X[I) • XA THEN

BEGIN
xA * X(1); MXA * I ;

END
ELSE BEGIN
IF X(I] < XI THEN BEGIN XI * X(I) J HXI * I J END J END t

a IV YII) • YA THEN
BEGIN

YA • Y(I]) HYA * I J
: ENP

ELSE BEGIN IF Y[I) < YI THEN BEGIN YI • Y(I] ) HYI * I JENDIENDJEND I

HYA * (HYA'I) x H / 6,2B I
HYI * (HYIol) x H / 6,28
HXI * (HXI'1) x H 1 6,28 I
HXA * (HXA'I) x H / 6,2B I
END _F NAXMIN J

PRCCEDUR [ SAHESCALE(X,YeNpXHIN_X_AXJDXpYMINeyMAXeDY)J VALUE N)
AHkAY XjY(O) I INTEGER N J
REAL XHIN,XMAXpDXpYMIN_YHAX_DYJ

BEGIN
REAL ANSP ANSX 3
INIEGEE IJ
ANS * ABS (Y(|]); ANBX • AIJS (X[l)))
FnR I * 2 STEP I UNTIL N DO

BEGIN

IF ABS (Y(])) • AN$ THEN ANS • ABS (Y(I))I
IF A_S (X(I]) • ANSX THEN ANSX • ABS (X(]])l

ENUJ
IF ANSX • ANS THEN ANS * ANSXJ
IF A_S < I THEN
BEGIN
XMIN " "lJ DX • 0,3333333333J
EN_
ELSE

IF ANS < 3 THEN
BEGIN

XMIH • "3 J OX • I J
ENO

._ ELSE
IF ANS < 6 THEN

4O

i i nell *
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4

BEGIN
XMIN • -SJ
OX • 2J

END
ELSE IF ANS <!2 THEN

BEGIN
XNIN **lBJ
DX *4J

END
ELSE IF ANS < IB THEN

BEGIN
XM|N * -tO J DX 6 6 P

END
ELSE

BEGIN
XNIN , e 24)

DX *8J
[NO;

DY * DX/ YMIN * XH|NJ
XNAX * 3xOXJ YNAX * 3xOYJ

END OF SANESCALE J

PROCEDURE PLOTCH[K(XjY,NeXNINeXMAX,YNINeYMAX)J VALUE NJ

ARRAy X,y (OJP INTEGER NI
REAL XHIN_XNAXpYNINPYNAXJ

BEGIN
INTEGER If
FOR I * I STEP I UNTIL N O0

BEGIN
IF X [I) _ XMAX THEN X El] * XMAX
ELSE
IF X(I) • XMIN THEN XrX] • XNINJ
IF Y (II > YNAX THEN Y(X] t yMAX
ELSE
IF YrI| < YNI N THEN Ytl) * YHINJ

END )
(NO OF PLOTCHEKI

PROCEDURE ORBITTDP (l)J
VALUE IJ INTEGER I ;
BEGIN
IF I s I THEN

SY_BOL(I.50t9.OO_oZIpALP1pO_24)
ELSE IF I • 2 THEN

SYMBOL(2oOOp9.00eo21_ALP2,0JlB)
ELSE

SYNBOL(BoOO_9,00_,21_ALP3_O,IS)J
SYMBOL(SoOOe9.SOeColOpALP3OpO_3))
NUNBER(So2Oe9oSOaQoIOpCASNOpO,4)J
SYNBOL(IoSSeB.TSp,I4eALP2S_Oe24)P
NUNBER(2eO3_S.TSs. S4_AY(Opl)/6e28pO_2);
K *K/JOOOJ KXX*KXXo|O001KYY*KYY/IO001K|X*K|X/|OOOJK|Y_K|Y/|ODOJ
SYMBOL(OoTSpB.SOpeI4,ALP4 _OplB)JNUNBER(I,35pB,SOJeI4pRPN pO_O)_
SYMBOL(3 oYSeB o50e e14# _LP6 *0, 19) JNUMBER(4023e8 iS0* o14# (U pO_])l

41
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I

,r

I'Z_x(Y)eY|J'YT)*Z4_Y|4Z2x(Y_'Y9 "YS)J
IF N ) 0 THEN BEGIN
F(9) • ViOl
F(IO) • "ZIOx(ZIIxY9,ZL2wYIO'ZISxYS'ZtAxY6 oZt9XyToZ20xYO)J
F(11) * Y|2)
F(121 * "Z|Ox(ZtSxYtI*ZI6xYi2"Z|TxY?'ZtOxYO'Z21xyS'z?$xYG_J
END ELSE f(9)•F(lOJ*Ffl|)•f(|2)60oO)
F(5) * ¥6J
F(6) * -FttO)'ZGx(ZGxY6eZ?2x(Y2"Y|O) _ZTxY5
-Z32xCYIeY9)oZ22x(Y3-YS|-YT)*Z|9xYY*Z20xYB)J
FIT] * YOJ
FEe) • -¥(12] oZSx(ZBxYO-722x(YA-Y|2) • Z9xYT
"Z32x(Y3"Y|I) * Z22x(Y|'Y9"YG)*Z21xYG*Z23xYG)J

END OF FUNCTION l

-- PROCEDUR( RKG {KEY)) INTFGER K J
ARRAY Y(O,O) I
BEGIN
REAL P J I_TEGER I_J J
FOR J • I STEP | UNTIL 4 PO
BEGIN
FUNCTION (J'IJY) I

-- FOR | • 0 STEP I UNTIL N DO

FOR I * 0 STEP I UNT]L N DO
B(G]N
P * S[J) x (KK(JaIJ - B(J) x giJ-l_l)) )
Y(JJT] • YiJ'I_I) _ H x p l

G(J_I) • O(d-|J|) • 3 x p - ¢(d) x KK(JJ|I l

END)
FO_ T•O STEP I UNT|L N DO

B[G|N
'_ y(oe|]•y(AeZ3;
.,_ O(OeI)*|(4,1) l

AY(%pK]•Y(4e|]J
:4 ENOJ
-_ FNBI *(Z|3xY[O_5| + ZlAxYfOe6] + ZJ9xY[Oe?] * Z2OxY[OeB])*2
.._ * (Z2IxY[Oe5]�_23xyrO,6) • ZlTxY[OeTJ + ZlBxY(O,O))*2 J

FN5! • (ZIIXY(Oe9]+Z12xY(CelO])*2*(ZIGxY[OelI) [O'12]_*2J
|F FMB|)FMBH THEN BEGTN

_. FMBH * FMOl) TINHO • Y(OeO)J [NO)
IF FNSZ > FMSH THEN BEGXN
FMSH • FNSIJ TINHS �Y(OeO])(NO;

ENO OF RKGJ
_- PROCEDURE T|NESTEP (TMAXe He Ne AYe NAeY)J

.o_ VALUE THAX_HpNJ
REAL TNAXeH) INTEGER Ne NA J

-_ REAL ARRAY AYiOe_) )
ARRAY Y(OeO] I

_.:4_ BEGIN

_ INT[GER |eJeKl LAO(L REPEAT lFOR ! ˆl UNTIL N DO

B(GIN
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@[O,|]*OJ
AY[I_I]*YIOoIIJ

[NOJ

F"BH *(ZIZxY[OpS] • Zt4xYfO_6_ �ZtgxY[Op?]* Z2OxY[O_O])*2
• (Z2t_Y[O_S] • Z23xY[0oeI * ZtTxY[OeT| * ZtOxY[O,8])*_ l

FNSH * (Z|IxYIO_9] pIO])t2_(Z_SxYCO_III*ZIexYtOwI2|)*2I
TI_HB • Y[OpO|J T|NHS • Y[OpOIJ

t

K*IJ
REP| ATI

K•K•|/
RKG (KEY)/
|F YIOeO]<TMA!: THEN GO TO REPEAT I
NA*K)

END OF TIMEST_PJ

A[I] • C[1] * C[4] • DeS I
'_ A[2] • C[2] • 1"SORTED,5) I

At3] • C[3) • _SgRT(Oe5) I

A[4] • 1/6 J
BEll • B[A] • 2 :
BE2] * BE3] • 1J
N_IT_(LP_< / /_ XtOe A****** SMFROLS ******we//e

" THIS PROGRAM CALCULATES THE TRANSIENT RESPONSE OF A SINGLE'MASSWJI_
: "FLFX|BLE ROYOR ON FLEXIBLE BEARING SUPPORTS (LINEAR) . THE RESULTS"e

/_WARE PLOTTEO AUTOMAT|DALLY (SEE |NPUT CARDS BELOn) AND THE W_leW|NITIAL AN_ FINAL VALUES ARE PRINTED OUT ON THE LINE PR|NTERt we/e
"THEY APPEAR IN THE GORREC1 _RDER TU BE TYPED ON DATA CARDS Unle
"TO CONTINUE THE HOT|ON IF DESIRED (THAT IS CARD 5(4))e Wple

///,w THE iNPUT TO THE PROGPAN IS AS FOLLOWS I we/e
" (ALL DATA 15 IN FREE F_ELD ) we/t_
" CARD I REAO(CRe/eTMAX_HpN_CASNO) we/_

THAX " NO, OF RADIANS SOLe IS TO BE SOLVED w_/_
" H - STEP SIZE USED IN INTEGRATION PROCEDURE (TMAXtHSTO0) "J/e
" N " NOt OF EGS, TO BE INTEGRATED w_/p

( R 12 IF SUPPORT * s B IF NO SUPPORT) we/p
CASNO " IDENTIFICATIO_ NUMBER [XXXX,XXXX] wp/p

[(MOe)(DAY)eIYEAK)(CASE NO,)] w_/_
/le" CARD 2 READ(CR_/_RPHeNeKpDSeC|_GACeEU_NJ_MI) Wel_

" RPH " ROTOR SPEED e REV/MIN w_/_
" N " RDTOR WEIGHT • LB, _/_
" K " ROTOR SHAFT ST|FFNESS e LBIIN _e/_
" DS o ABSOLUTE SHAFT DAMPING e LBwSEC/IN W_le
" C] - INTERNAL F_ICTION OAMPI'qG _ LB'SECIIN _lp
" QAC - CROSS'COUPLING_ LBIIN w_/e
" [U * UNBALANCE ECCENTRICITY OF N IN MILS "_1_

" NJ o JOURNAL _EIGHT AT EACH END • LB, wj/_
" N1 - SU_PDRT NEIGHT AT EACH BEARING • LB, _1_

/' //_" CArD 3 READ(CR_/_KXX_KYYeCXX_CYY_KXY_KYX_CXYeGYX) n_/e
_ " BEARING STIFFNESS AND OANPING OF EACH BEARING w_/_

l/e" CARD 4 IF N>8 THEN REAO(CReleKIX_KIYeC[XeCtY) w_,,_
" SUPPORT STIFFNESS AND DAMPING OF EACH SUPPORT w_/_

_ l/e" CARD 5 (4) REAO(CH,/_FOR I•O STEP I UNTIL N DO[Y(OeI]]) W_le
0 IS FOR INITIAL T|NEe RADIANS W_le

44
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" I " ABSOLUTE ROTOR DISPo • X'OlRo "•/•
2 " ABSOLUTE ROTOR VELC_ITYe X°OIMo _j/J

" 3 " ABS. ROTOR OISPo p Y'OIR. wet•
" 4 " ABS. ROTOR VELo e Y'DIRo wed•

S,6•7•B - SANE ORDER AS ABOVE FOR JOURNAL RELATIVE MOTION ",le
" 9,10Rile12 " SAME AS ABOVE FOR SUPPORT MOTION (IF REQUIRED) ",t,

//•" CARO 6 (5)REAO(CRe/CS,ISCALEexNIN,Ox•xMIN_eOx_eXMIN3eOX3) "el,
" CS - PLOTTER CONTROL 0 - NO PLOT I " PLOT me/•
" ISCALE " SCALE CONTROL O " PROG. SCALE I " USE FOLLOWING INFOo"

el,'" XMIN - NO. TO APPEAR AT ORIGIN ROTOR DISLPACENENT _,/,
" DX " SCALE INCREMENT PER INCH ROTOR OISPLACEMENT ",Ie

XMIN_eOX2 - SAME AS ABOVE 9UT FON JOURNAL PLOT we/e
" XNIN3eDX3 - SAME AS ABOVE BUT FOR SUPPORT w,/,

//e w CARD T (6) IF CS#O THEN READ(¢Re/,RPCS) "•/,
" RPCS " NO. OF TIMES INTEGo FOR TMAX RAOXANS IS TO BE SOLVED ",/,

//," EXAMPLE DATA INPUTI ",/e
"12.56eO.O5,Be608oTLOle "ete
"lOOOO,GTSe2BOOOOeOeO•OeOoSe]lE,50e "•/_
w$51OOOe606000•T39eBbSe "ne/:

-" "OeOeOeO,OeO,OeOeOe w,/e
•4_ "l•O•O•OeOeOeO•O, _e/e
•_, "5• eel•

//e" NOTE ON PLOTTING! ",/•
_ " BEQUEST ONE (1) BLOCK PER SET OF OATA me/e

: " "''REPEAT THE SERIES FOR EACH CASE "'' ">)J
_ITE(LP[PAGE])/

._ NRITE(LPe<" PLOTTER OUTPUT INFURMATION AND SUGGESTIONS",//,, "MAKE TMAX A MULTIPLE OF 6.78 (BUT LESS THAN "5 ZF HmO.05) ",1,
"A REASONABLE VALUE OF H IS O.OS N_ICH GIVES t25 STEPS PER ",/,J

._ "CYCLE OF RUNNING SPEED FOR THE INTEGRATIONo",//e
"TWO (2) MINUTES PROCESSOR TIME IS REQUIRED FOR IO CYCLES OF "e/_

"_ "SOLUTION FOR N • B. wr/e
._ "THREE (3) MINUTES RHOCESSOP TIME Is REQUIRED FOH I0 CYCLES OF ",/,
"_' "SOLUTION FOR N • 12. •,JR

/ewA SMALL CIRCLE APPEARS ON ]HE ORBIT EVERY 6o28 RADIANS OF ",/,
. mSOLUTION AND IS EQUIVALENT TO k KEY PHASOR MARK ON A CRO TRACE",/,

•_. "THIS IS TRUE ONLY WHEN TMAX IS A MULTIPLE OF 6._8e",/,
_ "A PLUS SIG_O APPEARS AT THE POINT THE SOLUTION Ib INITIALLY STARTED

"•/'"OR CONTINUEr} WITH RPCS • to "ell•
"WHEN N • 12, THE ABSOLUTE JOURNAL NOTION APPEAR_ AS A DASHED",/•
"LINE AND THE RELATIVE MoTIoN APPEARS AS A SOLID LINE. ",1/,

_=_ "THE CROSS COUPLING TER_S F_R THE BEARINGS ARE NUT PRINTED OUT",/_
wON THE PLOTTER OUTPUT BUT THEY DO APPEAR ON THE LP OUTPUTt m,/_

._; "AS A SUGGESTION YOU COULO PuT k NEGATIVE CASE NUMBER WHEN AND ",/p"IF THE CROSS COUPLING TERMS FOR THE BEARINGS ARL NOT ZERO .",tp
"THIS MOULD INDICATE TO LOOK AT THE LP I-O FOR THE VALUES">)J

;-41 ACA_O I
__il FMSHH • O.UJ FMBHH • O.OJ
"_! VV * 1 J

._ RPC * IJREAD (CRe/,TMAX,HeNeCASNO)[ALLDONE]J

"_1 READ(CR•/,_PM,NeKpOS,CIeQACeEUeNJ,NI)J
READ(CEe/,KXXJKYY,CXXeCYY,KXY,KYXJCXYeCYX)J
IF N • B THEN READ(CR,/_K|XeKIY,CtXeCIY)J

READ(CRe/eFOR I*O STEP ! UNTIL N O0 [Y[OeI]])l
KRITE(LP[PAGE])I
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N_ITE(LP_<"INITIAL CONOIT_ONSN')J
NRITE(LP, XFII.6>,FOR l • 0 STEP I UNTIL N OOfY[O_llJ)J
READ (CRo/pCSJISCALEaXMIN_OX,XMIN2,DX2eXMTN$,DASYJ
IF CS # 0 THEN
READ(CRe/pRPCS)J
RAD + RPM x 0o1047 )
M • _ t 386 J
H! + N1/386 J
NJ * kd/3B6.0J
ZZ + Mx RAn)
ZZ2 * ZZxRADJ
ZI + DS/ZZ) Z2*CI/ZZJ Z3*K,'ZZ2J Z4_OAC/ZZ2)
ZS, M/HJ) ZSt(CI*2xCXX}/(PXZZ)J Z22*Z2/2J
ZT*(2xKXX+K)/(2xZZ2)I Z32+Z3/2J
Ze*(CIt2xCYY)/(2xZZ)) Z9*(2xKYY+K)I(2xzz2)J
IF N • 8 THEN
ZIO_ N/HIJ ZIt*K1X/ZZ?I Zt2*CIX/ZZi ZI3*KXX/ZZ_I
Zt4,CXX/ZZI Z15+KIY/ZZ2I 7IS,CIY/ZZI
ZtT+KYY/ZZ2I ZIO*CYY/ZZ;
ZI9,KXY/ZZ21 Z20+CXY/ZZJ 72|,KYX/ZZ2J Z2$,CYX/ZZI
K_X * (2xKkXxKx(K+2XKXX) xCXX)*2)/((K+2XKXX)*2+

"_L 4x(RAOxCXX)*2)J
._ K2¥ * (2xKYYxKx(K+2xKYY) + 4xKx(RAOxCYY)*_)/ ((K *2,,_: 4X(RA_XCYY)*2)J

C_X * 2xKXKXCXX/((2xKXX+K}*2 + 4x(RADxCXX)*2) + DS )
-+ C_Y + 2xKx_xcYy/((2xKYY_K)*2 • 4x(RADMCYY}*2) • OS J

NCX , SeRT(2xKxKXX/((2xKXX•K)xM)) J

_' NCY * SORT(2xKxKYYI((PxKYY•K}xM)) )
ACX + K2X/(_CXxC2X) I

,_ AC¥ • K2Yt{NCYxC2Y) )
NCX * NCX/OelO4TJ NCY * NCY/OoIOAT)

TMAXH + TMAX I

TMAX * TMAX + Y[OJO])
REP[AT! RPC * RPC • IJ
TIMESTCP (THAI. H. Ne AY.NAeY))

N_ITF (LP[PAG[I)JN_ITE (LP_<X35pWORBITAL UOTION OF THE SZNGLE MASS UNBALANCED =.

NRIT[(LPp<X2;"CASE NO.".P|ItI_//;X2_WROTOR NEIGHT x".
F9.3," LB."*XI2*"ROTOR SPFED xwpFlO.2e" RPM"e/eX2e

md' "ROTOR STIFFNESS R"_FII.4_" LB/MIL.mpX3p

"_KBALANCE s"epBe3p" MILSWs/_X2e
"SHAFT DAMPING ="JFB._." LB'SEC/INW_ XSe

_; "INTERNAL DAMPING IWeF9.3p" LB'SECtIN",/_X2_

"C_OSS COUPLIMG xWeF9.2, " LBtIN",t/,X2_
"BEARING STIFFNESS"_XIIe"REARING DAMPING"_/*X3_
"_XX ="_FtOt3e" LBIMIL"eXSeWCXX x"eFlO.3l" LB'$ECIIN"_//XSe
"KYy x"_FtO_3_" LBIMIL"_XS_"CYY s"_FIO,3." LB'$EC/IN")_
CASN_eN,RPM_K/IOOO.O_EUeDS_CI_AC_KXX/|OOO.OeCXXeKYY/IOOO.O_CYY))

_-4 NeITE(LP_<X3_"KXY x"erlO.]_" LB/HIL"eXS_wCXY xW_FlO.)_ _ LB'SEC/IN"_

_i /*X3* "KYX s",FlOo$_" LB/MIL"eX6_"CYX x"_FIOo_, _ LB'SEC/IN">

eKXYI|OOO.OeCXYeKYX/|OOOeOeCYX))
NXITE(LP,<X3,"NEIGHT OF EACH BEARING "".P9.3," LB.",//>.NJ))
IF N ) 8 THEN
NHITE_LP_<X2,"SUPPORT STIFFNESS",XIIewSUPPORT UAMPINGnet_X$_
"_IX s"_FtO.3," LB/MIL"_X_"ciX :"_FlO.$_" LB'5(C/IN"_/_X3,
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I

BYR[I} • AYiT_I]_AY[IIeI|J
END_
ENDJ
]F 13¢AL[ THEN BEGIN
IF VV S 2 THEN BEGIN
XNAX * YMAX • 3 x DX l
YM]N • KMIN _ DY • OX J
XMAX2 * YMAX2 • )xOX2J
X_AX3 • YNAX3 • 3xO_3J
YNIN2 • XNZN2 I DY2 • DX2I
YM]N3 • XNIN3J DY3 • OX3J
ENDJ
PLOTCHEK(AY[|p*]_AY[3_*],NAeXN|NeXMAXJYNINpYMAX)J
SCALES (AY[3et]sNAeYMINpOY_CS)J
SCALES (AY[Ip*]pNAeXHZNpDXeCS)J
PL_TCHEK(AY[_pt]eAY[T_*]pNApXM|N2eXMAX2eYNIN2PYMAX2)J
SCALES(AY[Se*],NApXNIN2eDX_eCS)J
SCALES(AY[Te*]pNA_YMIN_eDY2eCS)J
IF N • 8 THEN _EG]N
l * tlJ
PLOTCHEK(AY[ge*]eAY[I_*]pNAeXM|NI_XHAXIeyMIN3eYNAXI);
$CALES(AY[Ie*lpNAJYMIN3_DY3pCS)I
SCALES(AY[9p*]pNAeXNIN3_DX$eCS)J
PLOTCHEKCBXR_BYReNApXMIN2pXNAX2eYNIN2eYNAX2)J

., SCALES(BYRpNApYN]N2eDY2_CS))
$CALES(BXReNApXHIN2eDX2eCS)J

EN_
_; ELSE

.__ BEGIN

$AHESCALE(AY[1_*]pAY[3_*]pNA_XHINpXHAX_DXjYMIN_YMAXJD¥)_
PLOTCHEK(AY[Ip*]eAY[3pt]_NApXN]N_XMAX_YM]N_YHAX)J
SAHESCALE(AY[5**]_AY[7_*]_NAeXNIN2_XNAX2_DX2eYNIN2eVHAX2eOY2)J
PLOTCHEK(AY[S_*]_AY[Te*]eNAeXNIN2_XHAX2eYN|N2_YHAX2)J
SCALES (AYf3_*]eNAeYH[NeDY_CS)J
SCALES (AY[I_*]_NAeXMIN_DXeCS)I

-_, SCALES(AY[Te*]eNA_YMIN2e_Y2_CS)I
-, SC_LES(AY[5_*]eNA_XM]N2eDX2eCS)J

IF N • e THEN BEGZN
i_ PLOTCHEKIBXN_BYR_NA_XMIN2_XMAX2_YNINZ_YN,_X2lJ

SCALES(BXR_NA_XHIN2_OX2_CS)I
• SCALES(BYR_NA_YHIN2eDY2eCS)J
' I • 11)

SAHESC_LE(AY[9e*]eAY[I_*]_NAeXNINI_XNAX$eDX$;YMINIeYMAXIeOYI_J

PLDTCHEK(AY[9_*I_AY[I_I_NA_XN|N$_XNAX3_YNIN3_yNAX3lJSCALES(AY[Ie*]_NA_YMIN3eDY3e¢S)I
• SCALE$(AY[9_*]_Nk_XHIN3_DX$_CS)J

":_ ENDj
_,,, END J

IF VV S 2 THEN
_ BEGVN

ORBITTOP(t)t

A_I_IXNINegX_YM|NeDY)J

:_ SYMBOL(AY[Iel]eAY[3_|],eI4_ALPHAI_Oe'|3)I
XA • 6,2BIH)
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FOR | * X& STEP _A UNTIL NA DO
SYNBOL(AY(|p|]nAY(Apl),OeOTeALPH_lnO,eS)J
LYkE(AY(|_e]_AY[AwkJpNA_CS)I
PLOT(IEwO_'S)J
IF VY S 2 THEN
BEGIN
OnBITTO_(2);
ABRID(XMIN_tOX2pYM|N2_OY2)J
END;
STM_OL(AY[SpI)_AY[T_|)tOe|AeALPHAI_O_e|$);
FOR I * XA STEP XA UNTIL NA DO
SYHBOL(AY(Sa|)pAY(TpI)eOeOTnALPHAI_O_eS)J
LYN((AY(5_*]$AY[Tle]sNA_CS)I
IF N • O THEN B(GIN
SYhBOL(BXR(|:eBYR(|IwOe|AeALPHA|pOmw|$)J
FO_ | * XA STEP XA UNTZ. NA O0
SYMBOL(BXR(I)pBYRil)JOoOTtALPHAI,0meS)J
OASNtZHE(BXR_BYR_NA,CS)/
ENDJ

; PLOT(t2_OppS) I
I r N • 6 THEN 9EG|N
ZF VV S 2 THEN

__ BEGIN
,_.a OflBITTOP(3)J
-de AGRIPCXNXNA_DXAeYN|NAJOYA)I

ENDJ

d ,lli
-- SYNBOL(AY(9pI)tAY(_i]tO,|AeALPHAIpOp'IA)J

_O_ I * XA STEP XA UNTIL NA DO

--_ SYNBOLIAY(9e|IJ_Y(JPII_OeOTeALPHA|_O_eg)ILYN[(AY(Bp_),AY(J_*)eNA,CS)J
ENC/

•_ ENDJ
Ne]I£(LP(DBLJ)/

"_ k.ITECLP:<WTRDBPkAX • "_FII,4_" AND OCCURS AT we F?i2e
-4 w CYCLES_>_F EUBOo0 THEN SORT(FNBH)x2eO ELSE _ORTCF_BH)X2_O/EU,
._ TI_HBI6.2B)J
_ IF N_8 THEN

NRITE(LP_<WTRDS'NAA • "'Flle_' WAND OCCURS AT W_F7,2_
•-i w CYCLESW)_Ir EUBOtO ThEN SQRTCFNSH)x2,0 ELSE SQRT(FMSH)x2oO/EIJ_

,._ TINHS/6_28)_NRITECLP_<_UNHALANGE STIFFN[SS • w_Fll_2_ _ LB/NILW_X2_
_ND UNBALANCE • _FB.3_ • NILS_>_ZZ2/IOOOtO, EU)J
IF FNBH > FNBHH THEN BEGIN
F_BHH * FNBHJ TINHBH * T|NHBJ

- ENDI
: IF FHSH ) FNSHH THEN B(G;N
: F_£HH * FNSH/ TINHSH * T]NHSI

ENDJ
IF RPC $ RPCS T_[N

_: BEGIN

TMA_ * TNAX • TNAXHJ
ISCALE * TRUE/
GO TO REPEAT)
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ENDJ
IF EU • 0.0 THEN BEGIN
FNBHH * SORT(FNBHH)x2.01
EMSHP • SQRT(FMSHH)K2.0J
END ELSE

BEGIN
FNBHH • SQRT(FMBHH)x2,0/EUJ
FNSHH • SORT(FNSHH)I2.01EUI
ENDJ
TIMFtBH • T]NHBH/6e281
TIMHSM • TIMHSH/6e28J
PLOT('24pOp'5)I
IF N=B THEN BEGIN
SYMBOL(O.TS,6.SO_O.14pALP?OeO_|8)I

NUMPE_(I.23_6._O,O.Z4,FNBHHxZZ_xEU/|OOOeOpO_3)J
ENd)
NUMBER(4.3|pO.T_pe|4pAYIOpNA]/6e28pO*2)J
SY_BOL(3.TS,6.50p.14pALP26pO_21))
NUMBER(4.23p6,50, tI4_TZ2/IOOOeOxEU_Op3)J
PLbT(12_Oo"5)J
IF N_8 THEN BEGIN
STMBOL(OtTS_6,_OeOtI4_ALP29_O,|BlJ

NUMFER(Ie_3,6.5OpO.|4pFNBHHxZZ?xEUI|OOOtO_O_3)J

711__ ENDJNiJ_BER(4.31pB,7_ee|4eAY[OeNA]/6.2BpOe2)|
SYMBOL(3.TS_6,SO_.|4,ALP27_Oe24)INUMBER(4.3S_6.SO_.|4jFNBHHpOJ3)J

dl_ NllkB[R(S.43_6eSOpt|4_TIMHPHIOp2))
PLOT(12_O,'S)J
IF N>8 THEH BEG]N.

NUMBER(4.ll_O.TSoe|gpAY[O_NAl/6.28pOe2)JSYMBOL(3tTSP6.SO_tI4_ALPg_eO_24)JNIIMBER(4e_Se6e_O_t|4_FNSHH_Q_$))
NUVBER(Se43_6,_Oee|4,TIMHSM_O_2))

ENDj

PLOT(12,0,-S)J
GO TO ACARC )
ALLDONE !
PLOT(I_C "3)J

ENDI

NRITE (LPIPAGE])J

_'_ NHITE (LP_<"TOTAL PROCESSOR TIME • "e F6.2_XIe"NINUTES"),T_kE(2) / 3600 ) l
N_ITE (LP[PAGE ] * ("TOTAL I'O TIME • "e F6e2_ X|e •MINUTES _ • •
TlkE(3) / 3600 ) I

END.

l ARCTA_ IS SEGMENT NUMBER qOBO,?RT ADDRESS |S 0117

COS IS SEGMENT NUMBER OO81;PRT ADDBESS IS 0075
EXP IS SEGMENT NUMBER OO82;PRT ADDRESS IS 007_
LN IS SEGMENT NUMRER OOB3ePRT ADDRESS ZS 007|
SLN IS SEGMENT NUMBER OO84_PRT _ODRiSS 1S 0076

_' SORT |S SEGMENT NUMBER OO85,PRT _DDRESS IS 0436
OUTPUT(N) IS SEGMENT NUMBER OOB6_P_T ADDMESS IS G_40

._ BLOCK CONTROL IS SEGMENT NUMBE_ OOB7_PRT ADDRESS IS 0005
: INPUT(N) |S SEGMENT NUMBER OOBB_PRT ADDRESS IS 0444

X TO THE | IS SEGMEN_ EUMBER ooBq_PRT ADDRESS IS 0073
: GO TO SOLVER IS SEGMENT NUMBER O090_PRT ADDRESS |S 0065

ALGOL NRITE |S SEGMENT NUMBER O09|_PRT ADDRESS IS 00t4

5O
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ALGOL REAO IS SEGN[NT NUMBER OO92ePRT ADDRESS IS 0015
ALGOL SELECT IS SEGMENT NUMBER OO93,PRT ADDRESS IS 0016
riLE ATTRBUTS IS SEGMENT NUMBER O094ePRT ADDRESS IS 0033

COMPILATION TIME(SECONOS)! PR s 5T 110 • 162
NUMBER OF (_ROflS DETECTED • O00e LAST ERROR ON CAROI ,
NUMBER OF SEGUENCE ERRORS COUNTED • Oe
NUMBER OF SLON kARNINGS u O.

_ PRT SIZEe 334J TOTAL SEGMENT SIZEs _952 MOROSe
DISK STORAGE RE@ee 360 SEGSol NO, SEGSeO 950
ESTIMATED CORE STORAGE R[GUIREN(flT • IS355 NORDSo

t
J
qm
m

4
m

r
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PLOTTER OUTPUT INFORMATION AND SUGGESTIONS

MAKE TNAX A MULTIPLE OF 6e20 (BUT LESS THAN 35 IF HsOeOS)
A REASONABLE VALUE OF H IS Oe05 NHICH GIVES 125 STEPS PER
CYCLE OF RU_NING SPEED FOR THE INTEGRATIONo

TNO (2) H|NUTES PROCESSOR TIME IS RERUIR(D FOR 10 CYCLES OF
SOLUTION FOR N • 8o

THREE (3) MINUTES PROCESSOR TIML IS REOU|RED FOR 10 CYCL(S _F
SOLUTION FOR N • 12.

A SHALL CIRCLE APPEARS ON THE ORBIT EVERY 6e2B RAD|ANS OF
SOLUTION ANC IS (OUIVAL(NT TO A KEY PHASOR HARK ON i cRO TRACE
THIS IS TRUE ONLY NHEN THAX IS A MULTIPLE OF 6o26o

A PLUS SIGN APPEARS AT THE POINT THE SOLUTION IS INITIALLY STARTED
OR CONTINU(O MiTH RPCS • |e

MHEN N • 12e THE ABSOLUTE JOURNAL MOTION APPEARS AS A DASHEO
LINE AND THE RELATIVE MOTION APPEARS AS A SOLID LINEe

THE CROSS C(;UPLING TERMS FOR THE BEARINGS ARE NOT PRINTED OUT
ON 1HE PLOTTER OUTPUT BUT THEY DO APPEAR ON THE LP OUTPUTt
AS A SUGGESTION YOU COULD PUT A NEGATIVE CASE NUMBER ffHEN AND
IF iH[ CROSS CObPLING TERMS FOR THE BEARINGS ARE NOT ZERO •
THIS MOULD INDICATE TO LOOK AT THE LP T°O FOR THE VALUES

|

1
/

F
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ORBITAL MOTION OF THI[ SINGLE MASS UNBALANCED ROTOR

CASE NOB TOToTIOO

ROTOR MEIGHT n 675,000 LBe ROTOR SPE[O • 10000000 RPM
ROTOR STIFFNESS • 26000000 LBtMIL, UNBALANCE m 00500 MILS
SHAFT OANPING s 80000 L_'S(C/IN INTERNAL OAMPING • 100,000 LB'SEC/IN
CROSS COUPLING • 0000 LB/|N

BEARING STIFFNESS BEARING DAMPING
KXX • 3510000 LBINIL CXX • T39,000 LBoS[C/IN
KYY 8 606,000 LB/NIL CYY • 0650000 LBoS(C/ZN
KXY • 00000 LBIMIL CXY • 00000 LBoS[C/TN
kYX • 00000 LBINIL GYX m 00000 LB°S[C/IN
tEIGHT Of EACH BEARING • 312,000 LB,

TMAXHm 1205_
N m 8
H I 00050

RPCS • 5
END CONDITIONS FOR RPC • |
YStAO0000
"00758303
m00497459

10740020
uO, "3T636

0,360990
-O,2OllSOil

00435109
O,0600BI

TROB'RAX • 00T590 AND OCCURS AT 11082 CYCLES
UNBALANCE STIFFNESS. 1916,95 LB/MtL AND UNBALANC[ n 00500 MILS

|NIIIAL CONDITIONS

620600000"10890000
0,163960

"00801630
"10133000

"00353260

+00167060
00128290

"00107260
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i f i t i' _ L _

NOMENCLKI'URE "

K2 ,.
A Amplification factor at rigid support critical = (0114)

Cr _ "

A j Complex bearing ampl itude, in

A] Complex s_pport amplitude, in
J

A2 Complex rotor ampiitude, in

C Damping ratio = CI/C 2 (DIM)

Cb Bearing damping, Ib-sec/in

C Critical damping coefficient, Ib-sec/in
C

C. Rotor internal damping, Ib-sec/in - ;
I

• C Absolute shaft damping, Ib-sec/in _-S

C] Support damping, Ib-sec/in

. C2 Effective rotor-bearing damping, Ib-sec/in

e Rotor mass eccentricity, inu

: F i Force transmitted to foundation, I b

Fb force transmitted to bearing housing, Ib 1

K Stiffness ratio, K1/K 2

Kb Bearing stiffness, Ib/in

K Rotor-shaft stiffness, Ib/in '-S

K1 Support stiffness, Ib/in

K2 Effect i ve rotor-bear i ng st i f fness, I b/i n

M Mass ratio, = M1/M 2 (DIM)

M1 Support mass, Ib-secZ/In

M2 Rotor mass, I b-sec2/in

N Rotor critical speed, ERPH]C

P Ist node point on response plot

Q Rotor cross-coupling stiffness, Ib/in

Q 2nd node on response plots

54
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R2 Rotor abso Iute d isp Iacement ampI I rude
4

T Kinetic energy

TRD Transmissibi I it), = Fz/(M2euW2)

V Potential Energy

Velocity, i n/sec

W! Support weight, Ib

Defined a:, X2

Xs Shaft re.ative displacement in x - direction

X] Support displacement in x - direction

X2 Rotor absolute displacement in x- direction

X. Journal relative displacement in x - direction
J

Ys Shaft rel ativ_ displ_cement in y - direction

YI Support displacement in y - direction

Y2 Rotor abso iute disp I _cement in y - di rect ion

Y. Journal relative displacement in y - direction
J

i Complex shaft relative amplitude, in.Zs

Z1 Complex support amplitude, in.

Z2 Complex rotor a_litude, in.

Z. Complex journal amplitude, in.J

a Rotor angular accele.-ation, rad/sec 2

BI Phase angle of support motion relative to rotor unbal-:nce, DEG

132 Phase angle of rotor motion relative to rotor unbalance, DEG

, 8b Phase angle of bearing motion relative to rotor unba;ance, DEG :

0 Angular displacement, tad

7 Defined as K/M (DIH)
t

E Damping ration= ci/c c (DIM) i

!Rotor absolute amplitude phase angle, deg.
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I !
, , | _ !

$ Moment of inertia

X Optimum ampl it,lde for tuned system

Defined as fZ]2 or IZ22 when calculating required damping at point

P or Q respectively

= Rotor angular velocity,_ rad/sec

ui, 2 Rotor system critical speed3, rad/sec

uc Rigid support critical speed, rad/sec

IZl, _2 Speeds at which the node point P and O occur on response plots

(AUTOMATIC PLOTTER NOMENCLATURE)

A Amplification factor at rigid support critical (DIM)

i CB Bearing damping, Ib-sec/in

CD Shaft dampi ng coef f ic i ent, I b-sec/i n
1

I DC I nterna I damp i ng, I b-sec/i n

E Rotor mass eccentricity, in

FTR@WC Force transmitted at rigid support critical

, N Rotor speed, RPM

; OAC Aeroaynamic cross-coupl ing coef., Ib/in.z

j TRDB Maximum bearing force transmitted (DIM)

TRDS Maximum support force transmitted (DIM)I
j FUW Rotating unbalance load per mii unbalance eccentricity, Ib

I W Rotor speed, rad/sec

t WC Rigid sup.port critical speed, rad/sec.

t
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ABSOLUTE ROTOFIHOTION

N,, 31:RXX)RI_, 14,, 0;100
K = 0.1)92 C - ;3.9t18
142- 98.80 LB. KB- 51X)sO00LIB/IN
KS= 500,000 1.5/[N C8 = 100.0 LB-SEC/[N
DC= 0.5 1.5-SEC/XN NI = 9.88 LB.
CD- 0.5 LB-SEC/XN KI - 25,000 LB/IN '
OI:IC- O.S LB/XN Ol - 1000.0 LB-SL=C/IN ,
TRD8= 0.585 AND(X:OJRSlit 0.58 CYCLES

i

1

/

J

.i

_-8 w i m i I.DOO -JLOIID -2.000 O.OOO 2.1100 _.OOO B.O00
X-D[R.

Figure 24 Dimensionless Translent Hotion of an UnbalancedRotor
for Twelve Cycles on Over-DampedSupports J_K= M =

"' 0.1, C = 44"]
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i BEARING HOTION
i

.. ,.o.,® !
K = 0.092 C = _3.9_6
142" 96.60 LB. lib - 500,000 LB/IN
KS = ,_QO,O00 LB/IH C8 = 100.0 LB"SEC/IN

;- DC- 0.5 L.B-SEC/IN HI - 9.66 LB.
: CD= 0.5" I.B-SEC/IN K1 = 25,000LB/]N

OI:IC- 0.5 LB/IN 01 = 1000.0 L.B-SECtIN
• TRI_ = 0.585 fiNDOCCUFISfiT 0.58 CYCLES

t

f _ TFIDS= 2. 159 lINDOCCURSAT 0.99 CYCLESFUI= 2_69.02'6I.BS.

i \
§ / \

-_ / ... ,,,_,..'--_.
/ ....,. _.,..

§ ---.

I '_

' _I!. ,r /i---
' t L

, \ !
- § \ --

i L= -2.000 -1.0X) O.OOO i,OgO l.gOO lOgO
: X-mR. " -

; Figure 25 Dimensionless Bearing Absolute end RelativA Transient ,
• Motlen for Twelve Cycles on Over-Damped Supports

, [K = M = O. 1, C = 44:] "_7
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.. SUPPORT MOTION I
.... ' ii ..... If. ' I ! ..... g' '

§
.4 ...... ,' , " ,' ,.... _ '
Ls.ooo -2.ooo -z.ooo o.ooo z.ooo _.ooo s.ooo

! X-DIR.

i Figure 26 Dimensionless Transient _upport Motion for Twelve
j Cycles wlfh Excessive Damping [K = M = 0.1, C = 44]
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ABSOLUTE ROTOR HOT!ON

N- 30000 RM4 H,

o.= O.,o.,
oo_ h

142" 96.60 LB. 500,000 LBtIN !
KS " SOCI,O00 i.8/IH C8 = 100.0 LB-SEC/IN iDO" 0.5 I.LB_._.O/Itl 141" 9.66 LB.
C,D" 0.5 I.B-S£O/.f_i K1 " 25s000 I.B/IN
_13 " 99.0 LB/IN O1 " I0.0 LB"SEO/IN 1
TRD8" O.16q RNDOCCU:tSRT 8.81 OYCLES !

§
el:"

P.BID -B.OOD _.000 0.0130 q.O0O &O00 12.000
X-DIR.

., Figure 27 Dlmer, slonless Transient Motion with Under-Damped
Flexible Supports for Twelve Cycles [K = M = 0.10,
C = 0.44]
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BERRING HOTION

N= 30000flPM H= 0.100
K= 0.092 C= 0._39
HZ = 96.60 LB. KB = 500,000 LB/IN
KS = 500,000 LB/IN CB =- 100.0 LB-SEC/IN
DO - O.5 LB-SECIIN HI - 9.66 LB.
CD ,, O.S LB-SECtIN K1 = 25,000 LB/IN
01_ - 99.0 LB/I N C1 ,, 10.0 LB-SEC/IN
TP,DB- 0.16Y RNDOCCURSAT 8.81 CYCLES

TRDS= 0.088 lINDOCCURSRT 8.09 CYCLES= 2Y69.028.B5. i

"/., A
fe "% .: t_w, .I" --;

H.DOD .-0.SS'/ 4_.333 .-0.OOE 0.333 - O.M'/ ].000
X-DIR.

Figure 28 DimensIonless Bearing Absolute and Relative Transient :,
Motion for Twelve Cycles on Under-DampedSupports

i [K = M = 0.1, C = 0.443 ?87 _
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SUPPORTMOTION I,'_ ,
!,

- N= 30000RPH M= 0.100 t
K,, 0.092 0,, 0.q39
142= 96.60 LB. KB = 500,000 LB/IN

- KS - 500,000 LB/IN P.,B- 100.0 LB-SEO/IN
DO- O.5 LB-SEO/IN 141- 9.66 LB.
CD" 0.5 LB-SEO/IN K1 = 25,000 LB/IN

: _ = 99.0 LB/IN Cl " 10.0 LB-SEO/IN i
• TP,DB" O.16tt FINDOCCURSFIT 8_81 OYOI._S ,;

TP,D5 = 0.088 liNDOCCURSFiT 8.09 CYCLES. FU.- 2't69.,o2.s.Bs.o}..... i" | ........ i i _"'

.... i ' i ''r ' i .......
-'12.000 -B.O00 -_.000 0.000 ILO00 B.O00 t2.000

_; X-DIR,
Figure 29 Dimensionless Transient Supporf Mo'rlon for Twelve

Cycles with Under Dan,ping [K = M = O. I, C = 0.44"]
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ABSOLUTEROTOFI14,9TION

_ N " 80000 RPH H - O.1130
K - 0.092 C - 5. _3

" -, H2 - 96.60 LB. KB,, 500_000 LB/!N
KS = SO0,O00LB/IN CB= lO0.O LB-SECtIN
DC • O.5 LB-SEC/IN Pll = 9, 66 LB.

CD = 0..5 _/IH KI = 25,,O00_LBtlNORC- _,_!__ CI " 125.0 LB SEC/IN J"
TRDB= 0.21_ I!NO_URS RT O.49 CYCLES _!

TRDS= 0:283 RHD_$ RT 0,48 CYCLES ;I• . F'Um=_ 026LBS.
I _ I _ ' I I !

L ',

,' _l m

_' = "' u = I u
_000 -;.000 -2.000 D.DOD 2.00L _000 6.000 ;

X-DIR.

Figure 30 Dimensionless Rotor Motion with Optimum Steady-o,ute
Damping Showing the Steady-State Orbit After Seven
Cycles of Running Speed [':, = M = 0.1, C = 5.5.]
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BEARINO MOTION i,.
J i :"

N - 30000 BPM M - O.100
K ;, 0.092 C.'- 5._93
142= 96.60LB. KB - 500,000 LBIIN J-
KS - 500,000 LB/_N CB= 100.0 LB-SEC/II_
DC= O.5 LB-SEC/IN 141- 9, 66 LB.

:_ CD= 0.5 LB-SECtIN K1 = 25,000 LR/IN
ORC= 0.5 LBtIN C1 = 125.0 LB-SEC/IN
TRDB= 0.2F= RNDOCCURSRT O;Lt9 CYCLES

o TRD5= 0.283 fiNDOCCURSRT O.U,8 CYCLES
8 2q69.026 LBS.
r; ..... I ¢

i" _ i i I-
L_.DO0 -2.000 -l.O00 0.000 ].OOG 2,_110 3,000

X-DIR.

Figure 31 Dimensionless Cearing Absolute and Relative Trer,31ent
Motion with Optlmum Steady-State m_':nlng F_" = M = 0.1,
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